Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Plotly Express in Python

Plotly Express is a terse, consistent, high-level API for creating figures.

The plotly.express module (usually imported as px) contains functions that can create entire
figures at once, and is referred to as Plotly Express or PX. Plotly Express is a built-in part of the
plotly library, and is the recommended starting point for creating most common figures. Every
Plotly Express function uses graph objects (The figures created, manipulated and rendered by
the plotly Python library are represented by tree-like data structures which are
automatically serialized to JSON for rendering by the Plotly.js JavaScript library.) internally and
returns a plotly.graph objects.Figure instance.

Plotly Express currently includes the following functions:

e Basics: scatter,line,area, bar, funnel, timeline

e Part-of-Whole: pie, sunburst, treemap, icicle, funnel area
e 1D Distributions: histogram, box,violin,strip,ecdf

e 2D Distributions: density heatmap,density contour

e Matrix or Image Input: imshow

e 3-Dimensional: scatter 3d,line 3d

e Multidimensional: scatter matrix,parallel coordinates,
parallel categories

e Tile Maps: scatter mapbox, line mapbox, choropleth mapbox,
density mapbox

e Qutline Maps: scatter geo, line geo, choropleth

e PolarCharts: scatter polar, line polar,bar polar

e Ternary Charts: scatter ternary,line ternary

High-Level Features

A single entry point into plotly: just import plotly.express as pxand getaccesstoall
the plotting functions, plus built-in demo datasets under px . data and built-in color scales and
sequences under px.color. Every PX function returnsaplotly.graph objects.Figure
object, so you can edit it using all the same methods like update layout and add trace.
Sensible, Overridable Defaults: PX functions will infer sensible defaults wherever possible, and will
always let you override them.

Flexible Input Formats: PX functions accept input in a variety of formats, from 11stsand dictsto
long-form or wide-form DataFrames to numpy arrays and xarrays to GeoPandas
GeoDataFrames.

Automatic Trace and Layout configuration: PX functions will create one trace per animation frame
for each unique combination of data values mapped to discrete color, symbol, line-dash, facet-row
and/or facet-column. Traces' legendgroup and showlegend attributes are set such that only
one legend item appears per unique combination of discrete color, symbol and/or line-dash. Traces
are automatically linked to a correctly-configured subplot of the appropriate type.

Automatic Figure Labelling: PX functions label axes, legends and colorbars based in the input
DataFrame or xarray, and provide extra control with the 1abels argument.

Automatic Hover Labels: PX functions populate the hover-label using the labels mentioned above,
and provide extra control with the hover name and hover data arguments.

Styling Control: PX functions read styling information from the default figure template, and support
commonly-needed cosmetic controls like category orders andcolor discrete map to
precisely control categorical variables.

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Uniform Color Handling: PX functions automatically switch between continuous and categorical
color based on the input type.

Faceting: the 2D-cartesian plotting functions support row, column and wrapped facetting with
facet row, facet col and facet col wrap arguments.

Marginal Plots: the 2D-cartesian plotting functions support marginal distribution plots with the
marginal,marginal xandmarginal yarguments.

A Pandas backend: the 2D-cartesian plotting functions are available as a Pandas plotting backend so
you can callthem viadf.plot ().

Trendlines: px . scatter supports built-in trendlines with accessible model output.
Animations: many PX functions support simple animation supportviathe animation frame
and animation group arguments.

Automatic WebGL switching: for sufficiently large scatter plots, PX will automatically use WebGL
for hardware-accelerated rendering.

For detailed information, follow the web link:

https://plotly.com/python/plotly-express/

ok Ak

Program (10a): Write a Python program to draw Time Series using Plotty

Libraries.

Aim

To write a Python programto draw time series using Plotly Libraries.

Procedure

The provided Python script showcases the use of the Plotly Express library to create an interactive line plot
depicting the exchange rate between the US Dollar and the Indian Rupee over time.

1.

Data Import:

o The script uses the Pandas library to read currency conversion data from a CSV file

(‘setl.csv’). You can download the csv file given above.

Plotly Express:

o Plotly Express (px) is employed to create an interactive line plot with the exchange rate data.
Line Plot:

o The 1ine function from Plotly Express is used to generate a line plot.

o The x-axis represents dates (‘DATE’), and the y-axis represents exchange rates (‘RATE”).
Title:

o The plot is given a title, “Dollar vs Rupee,” for context.
Interactive Display:

o The show method is called on the figure (£fig) to display the interactive plot.

Program 10.1

import pandas as pd

import plotly.express as px

dollar_conv = pd.read_csv('setl.csv')

fig = px.line(dollar_conv, x="DATE', y="RATE', title="Dollar vs Rupee’')
fig.show()

Output

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Program 16.2

import pandas as pd
import plotly.express as px

runs_scored = pd.read_csv('AustraliaVsIndia.csv')

fig = px.line(runs_scored, x="Overs', y=['AUS', 'IND'], markers=True)
fig.update_layout(title="Australia vs India ODI Match’, xaxis_title="OVERS', yaxis_title="RUNS',
legend_title="Country’')

fig.show()

Output

Program 10.3

#Bar Graph of Runs scored every Over

import pandas as pd

import plotly.express as px

runs_scored = pd.read_csv('AustraliaVsIndia.csv')

fig = px.bar(runs_scored, x="Overs', y=['AUS_RPO', 'IND_RPQ'], barmode="group’)
fig.update_layout(title="Australia vs India ODI Match’, xaxis_title="OVERS', yaxis_title="RUNS’,
legend_title='Country’)

fig.show()

Output

Result: Python program was successfully executed and drawn time series using Plotly

Libraries.

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Introducing JSON

JSON (JavaScript Object Notation) 1s a lightweight data-mterchange format. It is easy for humans to read and
write. It 1s easy for machines to parse and generate. It is based on a subset of the JavaScript Programming
Language Standard ECMA-262 3rd Edition - December 1999. JSON is a text format that is completely
language independent but uses conventions that are familiar to programmers of the C-family of languages,
including C, C++, C#, Java, JavaScript, Perl, Python, and many others. These properties make JSON an ideal
data-mterchange language.

JSON is built on two structures:

e A collection of name/value pairs. In various languages, this i1s realized as an object, record, struct,
dictionary, hash table, keyed list, or associative array.
e An ordered list of values. In most languages, this is realized as an array, vector, list, or sequence.

These are universal data structures. Virtually all modern programming languages support them in one form or
another. It makes sense that a data format that is interchangeable with programming languages also be based
on these structures.

:obiect @ II whitespace II ra @—l
In JSON, they take on these forms:
whitespace H string
An object 1s an unordered set of name/value pairs. An
object begins with {left brace and ends with }right
brace. Each name is followed by :colon and the
. hit

name/value pairs are separated by , comma. Ko D |

L% v
An array is an ordered collection of values. An array begins with [left bracket and ends with] right bracket.
Values are separated by , comma. 2y [] 7

) O W O—

A value can be a string in double quotes, or a number, or
trueor falseornull, oranobjector anarray. These
structures can be nested.

value -
P———— whitespace |—~—{ string —>— whitespace [— Any codepoint except J

“ or \ or control characters

N oy uotation mark |
A4

: reverse solidus
solidus
array (:)
C backspace
true
: formfeed
: inefeed

false

Jg0au

null
carnage Teturn
A string is a sequence of zero or more Unicode _@_
characters, wrapped in double quotes, using backslash | @ horizontal tab |
escapes. A character is represented as a single character
" . " x " 4 hex
string. A string is very much like a C or Java string. % dbits =

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

A number is very much like a C or Java number, except that the octal and hexadecimal formats are not used.

‘number 7o) fraction expanent

(o) [[digit |
J L (] digit —

Whitespace can be inserted between any pair of tokens. Excepting a few encoding details, which completely
describes the language.

Q)

whitespace
[
4 5 7

N Space
/ [

_OJlnefeed)
;O tarrlage return .
;O horizontal tab y

wkk

N
v
SN

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Choropleth Maps in Python

e A Choropleth Map is a map composed of colored polygons. It is used to represent spatial variations of
a quantity. This page documents how to build outline choropleth maps, but you can also build
choropleth tile maps using our Mapbox trace types.

e Below we show how to create Choropleth Maps using either Plotly Express' px.choropleth
function or the lower-level go.Choropleth graph object.

Introduction: main parameters for choropleth outline maps
Making choropleth maps requires two main types of input:
1. Geometry information:
1. This can either be a supplied GeoJSON file where each feature has either an 1d field or some
identifying value in properties;or
2. one of the built-in geometries within plot1y: US states and world countries (see below)
2. Alist of values indexed by feature identifier.
The GeoJSON data is passed to the geojson argument, and the data is passed into the col or argument of
px.choropleth (z if using graph objects), in the same order as the IDs are passed into the location
argument.
Note the geojson attribute can also be the URL to a GeoJSON file, which can speed up map rendering in certain
cases.

Choropleth Map with plotly.express

o Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types
of data and produces easy-to-style figures.

GeoJSON with feature.id
e Here we load a GeoJSON file containing the geometry information for US counties, where feature. id
1s a FIPS code (The Federal Information Processing Standard Publication 6-4 (FIPS 6-4) is a five-
digit Federal Information Processing Standards code which uniquely identified counties and county
equivalents in the United States, certain U.S. possessions, and certain freely associated states.).

Example 10.1

from urllib.request import urlopen

import json

with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/gecjson-counties-fips.json') as response:
counties = json.load(response)

counties[“featufas”]iaj

Output:
Example 10.2

from urllib.request import urlopen

import json

with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-fips.json') as response:
counties = json.load(response)

import pandas as pd
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-16.csv”,
dtype={"fips": str})

import plotly.express as px

fig = px.choropleth(df, geojson=counties, locations='fips', color='unemp’,
color_continuous_scale="Viridis",
range_color=(2, 12),
scope="usa",
labels={"'unemp':'unemployment rate'}
)
fig.update_layout(margin={"r":8,"t":0,"1":8,"b":8})
fig.show()

OQutput:

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Program (10b): Write a Python program for Creating maps using Plotty

Libraries.

Aim
To write a Python program for creating maps using plotty libraries.

Procedure

In this Python program, we utilize Plotly Express to create an interactive choropleth map visualizing GDP
per Capita by country. The dataset used is sourced from Gapminder, providing a comprehensive view of
economic indicators globally.

1. Import Libraries:
o We start by importing the necessary libraries, including plotly.express for easy and
interactive visualizations.
2. Data Loading:
o The program fetches data from a CSV file hosted on GitHub using pd.read csv. The dataset
includes information about countries, their ISO codes, and GDP per Capita.
3. Choropleth Map:
o The choropleth map is created using px. choropleth.
o Key parameters include:
* locations:ISO codes of countries.
= color: GDP per Capita, determining the color intensity on the map.
* hover name: Country names appearing on hover.
* projection: ‘natural earth’ projection for a global view.
= title: The title of the map.
4. Interactive Exploration:
o The resulting choropleth map is interactive, enabling users to hover over countries to see
GDP per Capita values.

(upload this file for output)

CSV File: gapminder_with_codes.csv

Program 16(b1l)

import plotly.express as px
import pandas as pd

Import data from GitHub
data = pd.read_csv('gapminder_with_codes.csv')

Create basic choropleth map

fig = px.choropleth(data, locations='iso_alpha’, color="gdpPercap’, hover_name='country’,
projection="natural earth’, title="GDP per Capita by Country’')

fig.show()

Output

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Procedure

In this Python program, we leverage Plotly Express to create an insightful choropleth map that visualizes key
demographic indicators across states and union territories in India. The data is sourced from India’s census,
providing a comprehensive overview of population distribution, density, and sex ratio.

Program Overview:

1. Import Libraries:

o We begin by importing necessary libraries, including §son for handling GeoJSON data,
numpy for numerical operations, pandas for data manipulation, and plotly.express for
creating interactive visualizations.

2. Load GeoJSON and Census Data:

o The GeoJSON file representing Indian states is loaded, and census data is read from a CSV

file contaming information about population, density, and sex ratio.

3. Data Preparation:
o We create a mapping between state names and their corresponding IDs for seamless

integration with GeoJSON features.
o Additional data preprocessing includes converting density values to integers and creating a
unique identifier (ig) for each state.
4. Choropleth Map:
o The choropleth map is generated using px.choropleth. Key parameters include:
* locations: State IDs for mapping.
* geojson: GeoJSON data for Indian states.
*= color: Population, determining color intensity on the map.
* hover name: State names for hover information.
* hover data: Additional information displayed on hover, including density, sex ratio,
and population.
= title: Title of the map.

5. Interactive Exploration:
o The resulting choropleth map is interactive, allowing users to hover over states to explore

population demographics.

(upload these 2 files for output)

CSV File: india_census.csv

JSON File: states_india.geojson

Program 16(b2)

import json

import numpy as np
import pandas as pd
import plotly.express as px

#Uncomment below lines to render map on your browser
#import plotly.io as pio
#ipio.renderers.default = 'browser’

india_states = json.load(open("states_india.geojson", "r"))

df = pd.read_csv("india_census.csv")

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

state_id_map = {}

for feature in india_states["features"]:
feature["id"] = feature["properties"]["state_code"]
state_id_map|[feature["properties"]["st_nm"]] = feature["id"]

df = pd.read_csv("india_census.csv")
dff"Density”] = df["Density[a]"].apply(lambda x: int(x.split("/")[0].replace(",", "")))
df["id"] = df["State or union territory"].apply(lambda x: state_id_map[x])

#print(df.head())
fig = px.choropleth(
df,
locations="id",
geojson=india_states,
color="Population"”,
hover_name="State or union territory",
hover_data=["Density", "Sex ratio"”, "Population”],
title="India Population Statewise",
)

fig.update_geos(fitbounds="locations", visible=False)
fig.show()

Output

Result: Python program was successfully executed and created maps using Plotly
Libraries.

Do not write the following (X):

Program 16(a) Output

Lallar vs Rupee

7L

!*n.xd*

) Mﬂ«}ky
&0 L

DATE

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Australia ve Indiz ODI Match

Country

200
—— A5
—=— IND
i /"

w
5 1mo
o
] //
o
] 10 20 20 An s0
OVERS
Australia vs India ODI Match
Country
W AUS RPO
12 W InDoRPD
10
6
E
£ g
4
% 10 20 4D 50

L=

DVERS

Program 10(b) Output

GDP per Capita by Country

gdpPercap

100k

80k

a0k

40k

20k

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

Population

100M

50M

Example 10.1

from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-
fips.json') as response:
counties = json.load(response)

counties["features"][0]

Output

{'type': 'Feature',
‘properties’: {'GEQ ID': '@580800US81801',
'STATE': '"el’,
"COUNTY': '@@1’,
'NAME': 'Autauga’',
'LSAD': 'County',
'CENSUSAREA': 594.436},
'geometry’: {"type': 'Polygon’,
‘coordinates’: [[[-86.496774, 32.344437],
[-86.717897, 32.462814],
[-86.814912, 32.348803],
[-86.898581, 32.582974],
[-86.917595, 32.664169],
[-86.71339, 32.661732],
[-86.?14219, 32.?85694],
[-86.413116, 32.787386],
[-86.411172, 32.489937],
[-86.496774, 32.344437111},
"id': 'e1eel1'}

Example 10.2

from urllib.request import urlopen
import json
with urlopen('https://raw.githubusercontent.com/plotly/datasets/master/geojson-counties-
fips.json') as response:
counties = json.load(response)

import pandas as pd

Python Matplotlib Prof. Parthasarathy P V (M) 8951523822

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/fips-unemp-
16.csv”,

dtype={"fips": str})
import plotly.express as px

fig = px.choropleth(df, geojson=counties, locations="fips', color="unemp’,
color_continuous_scale="Viridis",
range_color=(0, 12),
scope="usa",
labels={"unemp':'unemployment rate'}

)
fig.update_layout(margin={"r":0,"t":0,"1":0,"b":0})
fig.show()

Output

unemployment rate
12

i0

ke k

