

22 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

CHAPTER 7: Using jQuery UI Autocomplete in Django Templates (P141 – 163)

In this chapter we will cover:
• jQuery UI's autocomplete and themeroller
• A "progressive enhancement" combobox
• What needs to be done on the server-side and client-side to do the following:

o Using Django templating to dynamically create elements
o Client-side event handling to send autocomplete-based selections to the server
o DOM Level 0 and iframe-based alternatives on the client-side
o Extending server-side Django Ajax views to handle updates from the client
o Refining the working solution

• An example of practical problem solving when issues arise

jQuery UI's autocomplete and themeroller

• For further development, we will be using a jQuery theme.
• What specific theme to be used is customizable, but autocomplete and other plugins require

some theme such as jQuery UI Themeroller provides.
• jQuery UI Themeroller, which lets you customize and tweak a theme (or just download a

default), is available at: http://jqueryui.com/themeroller/
• When you have made any customizations and downloaded a theme, you can unpack it under

your static content directory. In our base.html template, after our site-specific stylesheet, we
have added an include to the jQuery custom stylesheet.

• We will be using the jQuery UI combobox, which offers a "progressive enhancement" strategy
by building a page that will still work with JavaScript off and will be more accessible than
building a solution with nothing but Ajax.

Progressive enhancement

• "Progressive enhancement," in a nutshell, means that as much as possible you build a system
that works without JavaScript or CSS, with semantic markup and similar practices, then add
appearance with CSS, and then customize behavior with JavaScript.

• Here we follow the same basic formula for department, location, and reports_to. We produce
a list of all available options. The first entry is for no selected
department/location/reports_to; as a courtesy to the user we add selected="selected" to the
presently selected value so that the form is smart enough to remember the last selected value,
rather than defaulting to a choice each time the user visits it.

• This much of the code is run once and creates the beginning of the containing paragraph, sets
a strong tag, and creates the entry for no department selected:

23 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

• Then we loop through the list of departments, creating an option that has a value of

"department." followed by the id of the entity provided as a department. Remember that
earlier we simply used a list of all entities for departments.

• If you are interested in tinkering, you could add a checkbox to indicate whether an entity
should be considered a department or a reports_to candidate.

24 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

• And likewise in Reports to:

• Our profile page is modified to provide more variables to the template. Later on, we might
identify which entities can be an entity's departments and which entities can be reported to,
thus improving the available options by paring away irrelevant entities, but for now we simply
provide all entities.

• This provides nice-looking autocomplete functionality like:

25 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

A first workaround

• The obvious way for us to save the data is by an XMLHttpRequest based call but it is not strictly
an interest to say that we go through XMLHttpRequest or jQuery for the submission. It would
also work to have a form that submitted the same data to an iframe.

• The previous code is largely the same, but is wrapped in a form tag, and preceded by a hidden

input designed to ensure that the view has all the information it needs.

26 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

• We define a link for
the homepage:

• We define similar,
but not identical,
handling for the e-mail:

• The location fields, as
the reports_to field in
the following snippet,
follow the same pattern
as the department
previously seen.

• We define a form:

27 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

• The handler follows the signature for
event handlers registered, as we
wish to register them.

• However, we are developing with an
analogous interface in mind:
submitted data in the id-value
format, with the ID following the
ModelName_fieldname_instanceID
naming convention.

Boilerplate code from jQuery UI documentation

• It is commonplace when using software to include adding boilerplate code. Here is an
example. We insert boilerplate code from the documentation pages for jQuery UI at
http://jqueryui.com/demos/autocomplete/#combobox:

28 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

Turning on Ajax behavior

• We make autocompletes out of the relevant selects, and also display the selects, which the
combobox() call hides by default. The user now has a choice between the select and an
autocomplete box.

• Here we have code which, from the documentation, might be expected to call the

update_autocomplete() event handler when a selection or change is made.
• After this code, let's look at our updated code on the server side, and then see how this bend

in the road can be addressed.

Code on the server side

• Here we have the updated save() view which
has been expanded to address its broader
scope. We accept either GET or POST requests,
although requests that alter data should only
be made by POST for production purposes,
and save the dictionary for exploration.

• If we have one of the autocomplete values, we
have a hidden field named id which
guarantees that any submission will have that
field in its dictionary, either request.POST or request.GET.

• However, the department, location, and reports_to fields are not all named value, and we
manually check for them and use value as a default:

• We perform some basic validation. Our code's HTML ID should only consist of word characters:

29 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

• Then we handle several special cases before the general-purpose code that handles most
/ajax/save requests. If there is a new EntityEmail, we create it and save it:

• Here we have the special case of an Entity's department being set.

• The location code works the same way as reports_to and department:

30 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

Refining our solution further

• We can set things up in the base template so that, for development, Django's informative error
pages are displayed; we also set form submissions to POST by default. We make a target div
for the notifications:

• Then we add, to the footer_javascript_site block, a slightly tweaked send_notifications().

• Our notifications area has several different

messages, not all of which need to be visually
labelled as errors, so we move from a red-based
styling to one that is silver and grey in
static/css/style.css:

• We call, on page load, $.ajaxSetup() to specify a
default error handler, and also specify form submission via POST.

31 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

• In the profile template, we will remove the containing form elements and the hidden inputs,
and replace the contents of the onchange attributes.

• The Department paragraph now looks like a cross between the previous two entries.

• The location and reports_to areas follow suit:

32 | P a g e Prof. Parthasarathy P V (M) 8951523822 URL:www.thagadoor.in/vtu/21cs62

21CS62 FULL STACK DEVELOPMENT

• The Reports to field also follows suit:

• For the autocomplete:

• Or, for another of several examples of
user input that was allowed, here
is an in-place edit used to add a
new email address.
