210562 FULL STACK DEVELOPMENT

MVT Development Pattern (P59-62)

Consider the overall design of a database-driven Django Web application.
Django is designed to encourage loose coupling and strict separation between pieces of an
application - it’s easy to make changes to one particular piece of the application without
affecting the other pieces.
In view functions, it is importance to separate the business logic from the presentation logic
by using a template system. With the database layer, apply that same philosophy to data
access logic.
Those three pieces together — data access logic, business logic, and presentation logic —
comprise a concept called the Model-View-Controller (MVC) pattern of software architecture.
In this pattern,
o “Model” refers to the data access layer
o “View" refers to the part of the system that selects what to display and how to display
it, and
o “Controller” refers to the part of the system that decides which view to use, depending
on user input, accessing the model as needed.

Django follows this MVC pattern closely called an MVC framework.

o M, the data-access portion, is handled by Django’s database layer

o V, the portion that selects which data to display and how to display it, is handled by
views and templates.

o The framework itself handles C, the portion that delegates to a view depending on user
input, by following your URLconf and calling the appropriate Python function for the
given URL.

Because the framework handles the “C” itself and most of the excitement in Django happens
in models, templates, and views, Django has been referred to as an MTV framework.
In the MTV development pattern,

o Mstandsfor “Madel,” the data access layer, This layer containsanything and everything
about the data: how to access it, how to validate it, which behaviors it has, and the
relationships between the data.

o Tstands for “Template,” the presentation layer. This layer contains presentation-related
decisions: how something should be displayed on a Web page or other type of
document.

o Vstands for “View,” the business logic layer. This layer contains the logic that access the
model and defers to the appropriate template(s). You can think of it as the bridge
between models and templates.

Configuring Databases (P62-65)

In Django’s database layer, First, we need to take care of some initial configuration: we need
to tell Django which database server to use and how to connect to it.
We'll assume we've set up a database server - SQLite, activated it, and created a database
within it (e.g., using a CREATE DATABASE statement).
As with TEMPLATE DIRS, database configuration lives in the Django settings file, called
settings.py by default. Edit that file and look for the database settings:
DATABASE_ENGINE=""
DATABASE_NAME ="'

22|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

21CS62 FULL STACK DEVELOPMENT

DATABASE_USER ="'
DATABASE_PASSWORD ="'
DATABASE_HOST ="'
DATABASE_PORT ="'
» Here’s a rundown of each setting. DATABASE_ENGINE tells Django which database engine to
use. If you're using a database with Django, DATABASE ENGINE must be set to one of the
strings shown in Table.

Table. Database Engine Settings

Setting Database Required Adapter

postgresql PostgreSQL psycopg version 1.x, http://www.djangoproject.com/x/
python-pgsql/1/.

postgresql_ PostgreSQL psycopg version 2.x, http://ww.djangoproject.com/

psycopg2 r/python-pgsql/.

mysql MySQL MySQLdb, http: //www.djangoproject.com/r/python-mysql/.

sglite3 SQLite No adapter needed if using Python 2.5+. Otherwise, pysqlite,
http: //www.djangoproject.com/x/python-sqlite/.

oracle Oracle cx_Oracle, http://www.djangoproject.com/r/python-oracle/.

» DATABASE NAME tells Django the name of our database. If we're using SQLlite, specify the
full filesystem path to the database file on your filesystem (e.g., '/home/django/mydata.db').

*» DATABASE USER tells Django which username to use when connecting to our database. If
we’'re using SQlite, leave this blank.

* DATABASE PASSWORD tells Django which password to use when connecting to your
database. If we're using SQLite or have an empty password, leave this blank.

» DATABASE HOST tells Django which host to use when connecting to your database. If our
database is on the same computer as our Django installation (i.e., localhost), leave this blank.
If we’'re using SQLite, leave this blank. MySQL is a special case here. If this value starts with a
forwardslash (/) and you're using MySQL, MySQL will connect via a Unix socket to the specified
socket,
for example: DATABASE_HOST = '/var/run/mysql'. If you're using MySQL and this value
doesn’t start with a forward slash, then this value is assumed to be the host.

* DATABASE PORT tells Django which port to use when connecting to your database. If we’'re
using SQLite, leave this blank. Otherwise, if you leave this blank, the underlying database
adapter will use whichever port is default for your given database server. In most cases, the
default port is fine, so you can leave this blank.

* Once we'veentered those settings, test our configuration. First, from within the mysite project
directory we created, run the command python manage.py shell.

* Once we've entered the shell, type these commands to test our database configuration:

>>> from django.db import connection
>>> cursor = connection. cursor()

* If nothing happens, then your database is configured properly. Otherwise, check the error
message for clues about what’s wrong. The following Table shows some common errors:

23 |Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

21CS62 FULL STACK DEVELOPMENT

Table. Database Configuration Error Messages

Error Message

Solution

You haven't set the
DATABASE_ENGINE setting yet.

Environment variable
DJANGO_SETTINGS_MODULE
is undefined.

Error loading module: No

Set the DATABASE_ENGINE setting to something
other than an empty string.

Run the command python manage.py shell rather than
python.

You haven't installed the appropriate database-specific

module named ; adapter (e.g., psycopg or MySQLdb).

isn'tan available database Set your DATABASE ENGINE setting to one of the valid

backend. engine settings described previously. Perhaps you made
a typo?

database does not exist Change the DATABASE_NAME setting to point to a database
that exists, or execute the appropriate CREATE DATABASE
statement in order to create it.

role does not exist Change the DATABASE_USER setting to point to a user that

exists, or create the user in your database.

Make sure DATABASE_HOST and DATABASE_PORT are set
correctly, and make sure the server is running.

could not connect to server

Creating First App

* A projectis an instance of a certain set of Django apps, plus the configuration for those apps.
Technically, the only requirement of a project is that it supplies a settings file, which defines
the database connection information, the list of installed apps, the TEMPLATE_DIRS, and so
forth.

* An app is a portable set of Django functionality, usually including models and views that lives
together in a single Python package. For example, Django comes with a number of apps, such
as a commenting system and an automatic admin interface. A key thing to note about these
apps is that they’re portable and reusable across multiple projects.

* There are very few hard-and-fast rules about how we fit our Django code into this scheme; it's
flexible.

o If you're building a simple Web site, you may use only a single app.

o If you're building a complex Web site with several unrelated pieces such as an e-
commerce system and a message board, we'll probably want to split those intoseparate
apps so that we’ll be able to reuse them individually in the future.

* Don't necessarily need to create apps at all, as evidenced by the example view functions
created a file called views.py, filled it with view functions, and pointed our URLconf at those
functions. No “apps” were needed.

* There’s one requirement regarding the app convention: if we're using Django’s database
layer (models), you must create a Django app. Models must live within apps. Thus, in order to
start writing our models, we’ll need to create a new app.

* For example, within the mysite project directory discussed earlier, type this command to
create a new app named books:

python manage.py startapp books

24 |Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

This command does not produce any output, but it does create a books directory within the
mysite directory. Let’s look at the contents of that directory:
books/

__init__.py

models.py

views.py
These files will contain the models and views for this app. Have a look at models.py and
views.py in our favorite text editor. Both files are empty, except for an import in models.py.
This is the blank slate for your Django app.

Defining and Implementing Models in Python (P65-82)

Topics Covered:

Defining the Model

Installing the Madel

Basic Data Access

Adding Model String Representations

Inserting and Updating Data

Selecting Objects (Filtering Data, Retrieving Single Objects, Ordering Data, Chaining Lookups, Slicing
Data)

Deleting Objects

Making Changes to a Database Schema (Adding Fields, Removing Fields, Removing Many-to-Many
Fields, Removing Models)

Defining the Model

A Django model is a description of the data in database, represented as Python code.

It's data layout— the equivalent of SQL CREATE TABLE statements—except it's in Python
instead of SQL, and it includes more than just database column definitions.

Django uses a model to execute SQL code behind the scenes and return convenient Python
data structures representing the rows in your database tables,

Django also uses models to represent higher-level concepts that SQL can’t necessarily handle.

If you’re familiar with databases, your immediate thought might be, “Isn’t it redundant to define
data models in Python and in SQL?”

Django works the way it does for several reasons:

Self-analysis requires overhead and is imperfect. In order to provide convenient data access
APls, Django needs to know the database layout somehow, and there are two ways of
accomplishing this.

o to explicitly describe the data in Python, and

o to self-analyse the database at runtime to determine the data models.
Django’s developers aim to trim as much framework overhead as possible, and this approach
has succeeded in making Django faster than its high-level framework competitors in
benchmarks.)
Second, some databases, notably older versions of MySQL, do not store sufficient metadata
for accurate and complete introspection.

25|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

21C562 FULL STACK DEVELOPMENT

e Writing Python is fun, and keeping everything in Python limits the number of times your brain
has to do a “context switch.” It helps productivity if you keep yourself in a single programming
environment/mentality for as long as possible.

* Having data models stored as code rather than in your database makes it easier to keep your models
under version control. This way, you can easily keep track of changes to your data layouts.

e SQL allows for only a certain level of metadata about a data layout. Most database systems,
for example, do not provide a specialized data type for representing email addresses or URLs.
Django models do. The advantage of higher-level data types is higher productivity and more
reusable code.

e SQL is inconsistent across database platforms. If you're distributing a Web application, for
example, it's much maore realistic to distribute a Python module that describes your data
layout than separate sets of CREATE TABLE statements for MySQL, PostgreSQL, and SQLite.

First Model

¢ Now focus on a basic book/author/ publisher data layout - the conceptual relationships
between books, authors, and publishers.

¢ The following concepts, fields, and relationships are:

o An author has a salutation (e.g., Mr. or Mrs.), a first name, a last name, an email address,
and a headshot photo.

o A publisher has a name, a street address, a city, a state/province, a country, and a Web
site.

o A book has a title and a publication date. It also has one or more authors (a many-
tomany relationship with authors) and a single publisher (a one-to-many relationship—
aka foreign key—to publishers)

s The first step in using this database layout with Django is to express it as Python code. In the
models.py file that was created by the startapp command, enter the following:

from django.db import models

class Publisher(models. Model):
name = models.CharField{maxlength=30)
address = models.CharField(maxlength=50)
city = models.CharField{maxlength=60)
state = models. CharField(maxlength=30)
country = models.CharField(maxlength=50)
website = models.URLField()

class Author{models.Model):
salutation = models. CharField(maxlength=10)
first_name = models.CharField(maxlength=30)
last_name = models.CharField{maxlength=40)
email = models.EmailField()
headshot = models.ImageField({upload_to="/tmp’)

class Book{models.Model):
title = models.CharField(maxlength=100)
authors = models.ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
publication_date = models. DateField()

26| Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

Let’s quickly examine this code to cover the basics.

The first thing to notice is that each model is represented by a Python class that is a subclass
of django.db.models.Model.

The parent class, Model, contains all the machinery necessary to make these objects capable
of interacting with a database—and that leaves our models responsible solelyfor defining their
fields, in a nice and compact syntax, this is all the code we need to write to have basic data
access with Django.

The exception to the one-class-per-database-table rule is the case of many-to-many
relationships. In our example maodels, Book has a ManyToManyField called authors. This
designates that a book has one or many authors, but the Book database table doesn’t get an
authors column. Rather, Django creates an additional table—a many-to-many “join table” —
that handles the mapping of books to authors.

Finally, unless we instruct it otherwise, Django automatically gives every model an integer
primary key field called id. Each Django model is required to have a single-column primary

key.

Installing the Model

Now create the tables in our database. In order to do that, the first step is to activate these
models in our Django project.
We do that by adding the books app to the list of installed apps in the settings file.
Edit the settings.py file again, and lookfor the INSTALLED APPS setting. INSTALLED APPS tells
Django which apps are activated for a given project. By default, it looks something like this:
INSTALLED APPS =

'django.contrib.auth’,

'diango.contrib.contenttypes',

'django.contrib.sessions’,

'django.contrib.sites’,

)
Modify the default MIDDLEWARE CLASSES and TEMPLATE CONTEXT PROCESSORS settings.
These depend on some of the apps we just commented out. Then, add 'mysite.books' to the
INSTALLED_APPS list, so the setting ends up looking like this:
MIDDLEWARE_CLASSES = []
TEMPLATE_CONTEXT_PROCESSORS =[]
INSTALLED APPS =(
'django.contrib.auth’,
'django.contrib.contenttypes’,
'diango.contrib.sessions’,
'django.contrib.sites',
'mysite.books’,

)

Now that the Django app has been activated in the settings file, we can create the database
tables in our database. First, let’s validate the models by running this command:

python manage.py validate
The validate command checks whether your models’ syntax and logic are correct. If all is well,
you'll see the message 0 errors found.

27 |Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

¢ |f your models are valid, run the following command for Django to generate CREATE TABLE
statements for your models in the books app
python manage.py sqlall books
* In this command, books is the name of the app. It's what you specified when you ran the
command manage.py startapp. When you run the command, you should see something like
this:

BEGIN;
CREATE TABLE "books_publisher" (
"id" serial NOT NULL PRIMARY KEY,
"name" varchar(30) NOT NULL,
"address" varchar(50) NOT NULL,
"city" varchar(60) NOT NULL,
"state_province" varchar(30) NOT NULL,
"country" varchar(50) NOT NULL,
"website" varchar(200) NOT NULL
);
CREATE TABLE "books_book" (
"id" serial NOT NULL PRIMARY KEY,
"title" varchar(100) NOT NULL,
"publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id"),
"publication_date" date NOT NULL
)i
CREATE TABLE "books_author" (
"id" serial NOT NULL PRIMARY KEY,
"salutation" varchar(10) NOT NULL,
"first_name" varchar(30) NOT NULL,
"last_name" varchar(40) NOT NULL,
"email" varchar(75) NOT NULL,
"headshot" varchar(100) NOT NULL
);
CREATE TABLE "books_book authors" (
"id" serial NOT NULL PRIMARY KEY,
"book_id" integer NOT NULL REFERENCES "books_book" ("id"),
"author_id" integer NOT NULL REFERENCES "books_author" ("id"),
UNIQUE ("book_id", "author_id")
);
CREATE INDEX books_book publisher id ON "books book" ("publisher id");
COMMIT;

* Note the following:

o Table names are automatically generated by combining the name of the app (books) and the
lowercased name of the model (publisher, bock, and authar).

o As we mentioned earlier, Django adds a primary key for each table automatically—the id fields.
You can override this, too.

© By convention, Django appends " _id" to the foreign key field name. As you might have guessed,
you can override this behavior as well.

o The foreign key relationship is made explicit by a REFERENCES statement.

28| Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

o These CREATE TABLE statements are tailored to the database you’re using, so databasespecific
field types such as auto_increment (MySQL), serial (PostgreSQL), or integer primary key
(SQLite) are handled for you automatically. The same goes for quoting of column names (e.g.,
using double quotes or single quotes). This example output is in PostgreSQL syntax.

Note: The sqlall command doesn’t actually create the tables or otherwise touch your database —
it just prints output to the screen so you can see what SQL Django would execute if you asked it.

Django provides an easier way of committing the SQL to the database. Run the syncdb
command, like so: python manage.py syncdb.
You'll see something like this:

Creating table books_publisher

Creating table books_book

Creating table books_author

Installing index for books.Book model
The syncdb command is a simple “sync” of your models to your database. It looks at all of the
models in each app in your INSTALLED_APPS setting, checks the database to see whether the
appropriate tables exist yet, and creates the tables if they don’t yet exist.
Note that syncdb does not sync changes in models or deletions of models; if you make a
change to a model or delete a model, and you want to update the database, syncdb will not
handle that.
If you run python manage.py syncdb again, nothing happens, because you haven’t added any
models to the books app or added any apps to INSTALLED _APPS.

LR R R 2

Basic Data Access

Once we've created a model, Django automatically provides a high-level Python API for
working with those models. Try it out by running python manage.py shell and type the
following:

>>> from books.models import Publisher

>>> p1 = Publisher(name="Addison-Wesley', address='75 Arlington St.",
... city="Boston’, state="MA', country="U.S.A.",

... website="http://www.addison-wesley.com/")

>>> p.save()

>>> p2 = Publisher(name="0'Reilly", address='10 Fawcett St.',

... city="Cambridge’, state="MA', country="U.5.A.",

... website="http://www.oreilly.com/")

>>> p2.save()

>>> publisher _list = Publisher.objects.all()

>>> publisher_list [,]

[<Publisher: Publisher object>, <Publisher: Publisher object>]
To create an object, just import the appropriate model class and instantiate it by passing in
values for each field.

To save the object to the database, call the save() method on the object. Behind the scenes,
Django executes an SQL INSERT statement here.

To retrieve objects from the database, use the attribute Publisher.objects. Fetch a list of all
Publisher objects in the database with the statement Publisher.objects.all(). Behind the
scenes, Django executes an SQL SELECT statement here.

ofe ofe ofe ofe e ofe ofe

29|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

Adding Model String Representations

When we printed out the list of publishers, all we got was this unhelpful display, which makes
it difficult to tell the Publisher objects apart:

[<Publisher: Publisher object>, <Publisher: Publisher object>]
We can fix this easily by adding a method called __str__()to our Publisher object. A_str__{()
method tells Python how to display the “string” representation of an object. You can see this
in action by addinga__str__() method to the three models:

def__str__(self):

from django.db import models class class Author(models.Model):
Publisher(models.Model): salutation = models.CharField(maxlength=10)
name = models.CharField(maxlength=30) first._ name = models.CharField(maxlength=30)
address = models.CharField(maxlength=50) last_name = models.CharField({maxlength=40)
city = models.CharField(maxlength=60) email = models.EmailField()
state = models.CharField(maxlength=30) country headshot = models.ImageField(upload_to="/tmp')
=models.CharField(maxlength=50]
website = models.URLField() def __str__(self):

return '%s %s' % (self.first_name, self.last_name)

return self.name

class Book{models. Model):

def__str__(self):

title = models.CharField(maxlength=100)
authors = models. ManyToManyField(Author)
publisher = models.ForeignKey(Publisher)
publication_date = models.DateField()

return self.title

For the changes to take effect, exit out of the Python shell and enter it again with python
manage.py shell. (This is the simplest way to make code changes take effect.)
Now the list of Publisher objects is much easier to understand:

>>> from books.models import Publisher

>>> publisher_list = Publisher.objects.all()

>>> publisher_list

[<Publisher: Publisher object>, <Publisher: Publisher object>]

Make sure any model you define has a __str__() method—because Django uses the output of
__str__() in several places when it needs to display objects.

Finally, note that __str__() is a good example of adding behavior to models. A Django model
describes more than the database table layout for an object.

FEERFEE

Inserting and Updating Data

To insert a row into your database, first create an instance of your model using keyword
arguments, like so:
>>> p = Publisher(name='Sarathy', address='28 Bannerghatta Road.', city='Bengaluru',

... state='Karnataka', country='INDIA', website="http://www.incerd.in/')
To save the record into the database (i.e., to perform the SQL INSERT statement), call the
object’s save() method: >>> p.save().
In SQL, this can roughly be translated into the following:

30|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

INSERT INTO book_publisher
(name, address, city, state, country, website)
VALUES
(‘'Sarathy', '28 Bannerghatta Road.', 'Bengaluru’, 'Karnataka', 'INDIA', 'http://www.incerd.in/");
» Because the Publisher model uses an autoincrementing primary key id, the initial call to save()
does one more thing: it calculates the primary key value for the record and sets it to the id
attribute on the instance:
>>> p.id 52 # this will differ based on your own data
Subsequent calls to save() will save the record | The preceding save() statement will resultin roughly the
in place, without creating a new record (i.e., | following SQL:
performing an SQL UPDATE statement instead UPDATE book_publisher SET
of an INSERT):

name='5arathy’',
address='28 Bannerghatta Road.',

>>>p.name = 'Sarathy Publishing' city='Bengaluru', state='"Karnataka',
>>>p.save() country='INDIA,
website="http://www.incerd.in/'
WHERE
id=52;
Fhdkok kg

Selecting Objects (Filtering Data, Retrieving Single Objects, Ordering Data, Chaining
Lookups, Slicing Data)
* Look up all the data for a certain model:
>>> Publisher.objects.all()
[<Publisher: Addison-Wesley>, <Publisher: O'Reilly>, <Publisher: Sarathy Publishing>]
» Thisroughly translates to the following SQL:
SELECT id, name, address, city, state, country, website
FROM book_publisher;
o |et’s take a close look at each part of this Publisher.objects.all() line:
o First, we have the model we defined, Publisher.
o Next, we have this objects business. Technically, this is a manager - take care of all
“table-level” operations on data including, most important, data lookup.
o Finally, we have all{). This is a method on the objects manager - that returns all the rows
in the database.

Filtering Data
o Most of the time we’re going to want to deal with a subset of the data with the filter()
method:
>>> Publisher.objects.filter(name="Sarathy Publishing")
[<Publisher: Sarathy Publishing>]
o filter() takes keyword arguments that get translated into the appropriate SQL WHERE
clauses. The preceding example would get translated into something like this:
SELECT id, name, address, city, state, country, website
FROM book_publisher WHERE name = ‘Sarathy Publishing';
o We can pass multiple arguments into filter() to narrow down things further:
>>> Publisher.objects.filter(country="INDIA", state="Karnataka")
[<Publisher: Sarathy Publishing>]

31|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

o Those multiple arguments get translated into SQL AND clauses. Thus, the example in the
code snippet translates into the following:

SELECT id, name, address, city, state_province, country, website

FROM book publisher WHERE country = 'INDIA' AND state = 'Karnataka’;

o Other lookup types are available:

>>> Publisher.objects.filter(name__contains="press")

[<Publisher: Sarathy Publishing>]

o That’s a double underscore there between name and contains. Django uses the double
underscore to signal that the “__" contains part gets translated by Django into an SQL
LIKE statement:

SELECT id, name, address, city, state_province, country, website FROM

book_publisher

WHERE name LIKE '%press%’;

o Other types of lookups are

1. icontains (case-insensitive LIKE)

2. startswith and endswith

3. range (SQL BETWEEN queries)

FEEk kR

Retrieving Single Objects
o Sometimes we want to fetch only a single object, use the get() method
>>> Publisher.objects.get(name="Sarathy Publishing")

[<Publisher: Sarathy Publishing>]
o Instead of a list (rather, QuerySet), only a single object is returned. Because of that, a

query resulting in multiple objects will cause an exception:

>>> Publisher.objects.get{country="INDIA")

Traceback (most recent call last):

... AssertionError: get() returned more than one Publisher—it returned 2!
o A query that returns no objects also causes an exception:

>>> Publisher.objects.get(name="Penguin")

Traceback (most recent call last):

... DoesNotExist: Publisher matching query does not exist

Ordering Data
o Inthe previous examples, the objects are being returned in a random order. The
function order_by() is used to reorder our data into a useful list.
>>> Publisher.objects.order _by("name")
[<Publisher: Sarathy Publishing>, <Publisher: Addison-Wesley>, <Publisher: O'Reilly>]
o SQL now includes a specific ordering: SELECT id, name, address, city, state, country,
website FROM book_publisher ORDER BY name;
o We can order by any field we like:

>>> Publisher.objects.order_by("address")
[<Publisher: O'Reilly>, <Publisher: Sarathy Publishing>, <Publisher: Addison-Wesley>]

>>> Publisher.objects.order_by("state")
[<Publisher: Sarathy Publishing>, <Publisher: Addison-Wesley>, <Publisher: O'Reilly>]

o Order by multiple fields:
>>> Publisher.objects.order _by("country”, "address")

32|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

[<Publisher: Sarathy Publishing>, <Publisher: O'Reilly>, <Publisher: Addison-Wesley>]
o We can also specify reverse ordering by prefixing the field name with a — (a minus sign
character):
>>> Publisher.objects.order_by("-name")
[<Publisher: O'Reilly>, <Publisher: Sarathy Publishing>, <Publisher: Addison-Wesley>]
o While this flexibility is useful, using order_by() all the time can be quite repetitive, most
of the time we’ll have a particular field we usually want to order by. In these cases,
Django lets you attach a default ordering to the model:

class Publisher(models.Model):
name = models.CharField(maxlength=30)
address = models.CharField(maxlength=50)
city = models.CharField(maxlength=60)

state province = models.CharField(maxlength=30)
country = models.CharField(maxlength=50)
website = models.URLField()

def _str (self):
return self.name

class Meta:
ordering = ["name"

|
This ordering = ["name"] bit tells Django that unless an ordering is given explicitly with |
order_by(), all publishers should be ordered by name.

Chaining Lookups

o We’'ve seen how can filter data, and we’ve seen how can order it. At times, of course,
we're going to want to do both, in these cases, simply “chain” the lookups together:

>>> Publisher.objects.filter(country="U.5.A.").order_by("-name")
[<Publisher: O'Reilly>, <Publisher: Sarathy Publishing>, <Publisher: Addison-Wesley>]

o As you might expect, this translates to an SQL query with both a WHERE and an ORDER
BY:
SELECT id, name, address, city, state_province, country, website FROM book publisher WHERE
country = 'U.S.A' ORDER BY name DESC;

o We can keep chaining queries as long as we like. There is no limit.

Slicing Data

o Another common need is to look up only a fixed number of rows.

o Imagine we have thousands of publishers in database, but we want to display only the
first one. You can do this using Python’s standard list slicing syntax:
>>> Publisher.objects.all()[0]
<Publisher: Addison-Wesley>

o This translates roughly to the following: SELECT id, name, address, city, state_province,
country, website FROM book publisher ORDER BY name LIMIT 1;

Rk

33|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

Deleting Objects (P-78)

¢ Todelete objects, simply call the delete() method on your object:
>>> apress = Publisher.objects.get(name="Addison-Wesley")
>>> apress.delete()
>>> Publisher.objects.all()
[<Publisher: Apress Publishing>, <Publisher: O'Reilly>]
e You can also delete objects in bulk by calling delete() on the result of some lookup:
>>> publishers = Publisher.objects.all()
>>> publishers.delete()
>>> Publisher.objects.all()
[l
*» Deletions are permanent, it’s usually a good idea to avoid deleting objects unless absolutely
have to—relational databases don’t do “undo” so well, and restoring from backups is painful.
* |t's often a good idea to add “active” flags to your data models. We canlook up only “active”
objects, and simply set the active field to False instead of deleting the object. Then, if we
realize we’ve made a mistake, we can simply flip the flag back.

Making Changes to a Database Schema

Topics Covered:
Adding Fields
Removing Fields
Removing Many-to-Many Fields
Removing Models)

o “syncdb” command creates tables that don't yet exist in our database—it does not sync
changesin models or perform deletions of models. If add or change a model’s field, or if delete
a model, we need to make the change in database manually.

¢ When dealing with schema changes, it's important to keep a few things in mind about how
Django’s database layer works:

o Django will complain loudly if a model contains afield that has not yet been created
in the database table. This will cause an error the first time you use the Django
database APl to query the given table (i.e., it will happen at code execution time, not
at compilation time).

o Django does not care if a database table contains columns that are not defined in the
model.

o Django doesnot care if a database contains a table that is not represented by a model.

¢ Making schema changes is a matter of changing the various pieces—the Python code and the
database itself—in the right order.

ofe e ofe ofe e ofe ofe

Adding Fields

o When adding a field to a table/model in a production setting, the trick is to take advantage
of the fact that Django doesn’t care if a table contains columns that aren’t defined in the
model. The strategy is to add the column in the database and then update the Django
model to include the new field.

34|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

o Inorder to know how the new database column should be expressed in SQL, need to look at
the output of Django’s manage.py sqlall command, which requiresthat the field exist in the

model.
o First, take these steps in the development environment (i.e., not on the production server):
1. Addthe field to model.
2. Run manage.py sqlall [yourapp] to see the new CREATE TABLE statement for the
model.
3. Start database’s interactive shell (e.g., psgl or mysql, or you can use manage.py
dbshell). Execute an ALTER TABLE statement that adds your new column,
4, (Optional.) Launch the Python interactive shell with manage.py shell and verify that the
new field was added properly by importing the model and selecting from the table
(e.g., MyModel.objects.all()[:5]).
o Then on the production server perform these steps:
1. Start database’s interactive shell.
2. Execute the ALTER TABLE statement used in step 3 of the development environment
steps.
3. Addthefield to model. If we’re using source-code revision control and you checked in
your change in development environment step 1, now is the time to update the code
(e.g., svn update, with Subversion) on the production server.
4. Restart the Web server for the code changes to take effect.

o Forexample, if we add a num_pagesfield to the Book model described. First, alter the model
in our development environment to look like this:
class Book(models.Model):

o Then

title = models.CharField(maxlength=100)

authors = models.ManyToManyField(Author)

publisher = models.ForeignKey(Publisher)
publication_date = models.DateField()

num_pages = models.IntegerField(blank=True, null=True)

def __str__(self):
return self.title

run the command manage.py sqlall books to see the CREATE TABLE statement. It

would look something like this:
CREATE TABLE "hooks_book" (

"id" serial NOT NULL PRIMARY KEY,

"title" varchar(100) NOT NULL,

"publisher_id" integer NOT NULL REFERENCES "books_publisher" ("id"),
"publication_date" date NOT NULL,

"num_pages" integer NULL

o Next,

psql

start the database’s interactive shell for our development database by typing
(for PostgreSQL), and execute the following statements:

ALTER TABLE books_book ADD COLUMN num_pages integer;
o After the ALTER TABLE statement, verify that the change worked properly by starting the
Python shell and running this code:
>>> from mysite.books.models import Book
>>> Book.objects.all()[:5]

35 |Page

Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

o If that code didn’t cause errors, we’'d switch to our production server and execute the
ALTER TABLE statement on the production database. Then, update the model in the
production environment and restart the Web server.

Removing Fields

o Removing a field from a model is a lot easier than adding one. To remove a field, just follow
these steps:
1. Remove the field from your model and restart the Web server.
2. Remove the column from vyour database, using a command like this:
ALTER TABLE books_book DROP COLUMN num_pages;

Removing Many-to-Many Fields

o Because many-to-many fields are different from normal fields, the removal process is
different:
1. Remove the ManyToManyField from your model and restart the Web server.
2. Remove the many-to-many table from your database, using a command like this:
DROP TABLE books_books _publishers;

Removing Models

o Removing a model entirely is as easy as removing a field. To remove a model, just follow
these steps:
1. Remove the model from your models.py file and restart the Web server.
2. Remove the table from vyour database, using a command Ilike this:
DROP TABLE books_book;

36|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

