210562 FULL STACK DEVELOPMENT

Module-2: Django Templates and Models

Template System Basics (P31-32), Using Django Template System (P33-40), Basic Template
Tags and Filters (P40-47), Template Loading (P49-54), Template Inheritance (P54-58)

MVT Development Pattern (P59-62). Configuring Databases (P62-65), Defining and
Implementing Models (P65-71), Basic Data Access (P71), Adding Model String
Representations (P72-73), Inserting/Updating data (P73-74), Selecting and deleting objects
(P74-79), Schema Evolution (P79-82)

Template System Basics (P31-32)

¢ A Django template is a string of text that is intended to separate the presentation of a
document from its data.

¢ A template defines placeholders and various bits of basic logic (i.e., template tags) that
regulate how the document should be displayed.

e Usually, templates are used for producing HTML, but Django templates are equally capable
of generating any text-based format.

s Let's dive in with a simple example template. This template describes an HTML page that
thanks a person for placing an order with a company. Think of it as a form letter:

<html>
<head>
<title>Ordering notice</title>
</head>
<body>
<p>Dear {{ person_name }},</p>
<p>Thanks for placing an order from {{ company }}. It's scheduled to
shipon {{ ship_date|date:"Fj, Y" }}.</p>
<p>Here are the items you've ordered:</p>

{% for item in item_list %}
{{ item }}
{% endfor %}

{% if ordered_warranty %}
<p>Your warranty information will be included in the packaging. </p>
{% endif %}
<p>Sincerely,
{{ company }}</p>
</body>
</html>

e This template is basic HTML with some variables and template tags thrown in. Let’s step
through it:
o Any text surrounded by a pair of braces (e.g., {{ person_name }}) is a variable. This
means “insert the value of the variable with the given name.” How do we specify
the values of the variables? We’ll get to that ina moment.

1|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

o Any textthat’s surrounded by curly braces and percent signs (e.g., {% if ordered_
warranty %}) is a template tag. The definition of a tag is quite broad: a tag just tells the

template system to “do something.”

= This example template containstwo tags: the {% foritem in item_list %} tag
(a fortag) and the {% if ordered_warranty %} tag (an if tag). A “for” tag acts
as a simple loop construct, letting you loop over each item in a sequence.
An "if” tag, as you may expect, acts as a logical “if” statement. In this
particular case, the tag checks whether the value of the ordered warranty
variable evaluates to True. If it does, the template system will display
everything between the {% if ordered warranty %} and {% endif %}. If not,
the template system won’t display it. The template system also supports {%
else %} and other various logic statements.

o Finally, the second paragraph of this template has an example of afilter, with which
you can alter the display of a variable. In this example, {{ ship_date |date:"Fj, Y" }},
we’re passing the ship date variable to the date filter, giving the date filter the
argument "F j, Y. The date filter formats dates in a given format, as specified by

that argument.

Using Django Template System (P33-40)

To use the template system in Python code, just follow these two steps:

1. Create a Template object by providing the raw template code as a string. Django
also offers a way to create Template objects by designating the path to a template
file on the filesystem; we’ll examine that in a hit.

2. Call the render() method of the Template object with a given set of variables (i.e.,
the context). This returns a fully rendered template as a string, with all of the
variables and block tags evaluated according to the context.

Topics covered: Creating Template Objects - Rendering a Template - Multiple Contexts, Same
Template - Context Variable Lookup - Playing with Context Objects

1.

2|Page

Creating Template Objects

The easiest way to create a Template object is to instantiate it directly. The Template class

lives in the django.template module, and
the constructor takes one argument, the raw
template code.
Let's dip into the Python interactive
interpreter to see how this works in code.
From within the project directory created by
django-admin.py startproject, type python
manage.py shell to start the interactive
interpreter. Here’s a basic walk-through:
>>> from django.template import Template
>>>t = Template("My name is {{ name }}.")
>>>print t
If vyou're

following along

Throughout tis book, we featur: example Python inferactive interpreter sessions. You can recognie these

exampes by hie riple > greater-than signs (Python prompti==J=orelar-tan signs (> >»), which designate

T Irtarprater’s prompt IF you're copying examples from this buak, donl copy fose greater-than signs.
Mubtiline statemests in the interactive interpreter are padded with three dels (. . .}, for examgle:

33> print "“*This is a
..+ string that spans
vv « threa lines, """
This is a
string that spans
three lines.
355 def my function{value):
B print wvalue
333 my_function{'helln®)
hello
Thosa tiree dots at the stat of the adddtional ines are inserted by the Python shell—they're not part of

our mput, Welnclude them hera to be faithful to the actual celput of the interpreler, If you copy our examples
o Tollow alorg, don'l copy those dots.

interactively,

you'll see something like this:

<django.template.Template object at Oxb7d5f24c>. That Oxb7d5f24c part will be

Prof. Parthasarathy P V

URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

different every time, and it doesn’t really matter; it's simply the Python “identity” of the
Template object.

e \When you create a Template object, the template system compiles the raw template
code into an internal, optimized form, ready for rendering. But if your template code
includes any syntax errors, the call to Template() will cause a TemplateSyntaxError
exception:

>>> from django.template import Template

>>> t = Template('{% notatag %} ')

Traceback (most recent call last):

File "<stdin>", line 1, in ?

django.template. TemplateSyntaxError: Invalid block tag: 'notatag’

e The system raises a TemplateSyntaxError exception for any of the following cases:
1. Invalid block tags

Invalid arguments to valid block tags

Invalid filters

Invalid arguments to valid filters

Invalid template syntax

Unclosed block tags (for block tags that require closing tags)

gy U1 B W N

2. Rendering a Template

e Once you have a Template object, you can pass it data by giving it a context. A context is
simply a set of variables and their associated values.

e Atemplate uses this to populate its variable tags and evaluate its block tags.

e A context is represented in Django by the Context class, which lives in the
django.template module. Its constructor takes one optional argument: a dictionary
mapping variable names to variable values.

e (Call the Template object’s renderf) method with the context to “fill” the te mplate:

>>> from django.template import Context, Template
>>> t =Template("My name is {{ name }}.")

>>> ¢ = Context{{"name": "Sarathy"})

>>> t.render(c)

'My name is Sarathy.’

Note: A Python dictionary is a mapping between known keys and variable values. A Context
is similar to a dictionary, but a Context provides additional functionality.

e Variable names must begin with a letter (A—Z or a—z) and may contain digits, underscores,
and dots. (Dots are a special case we’ll get toin a moment.)
e \Variable names are case sensitive.

Here's an example of template compilation and rendering, using the sample template:

>>> from django.template import Template, Context
>>> raw_template = """<p>Dear {{ person_name }},</p>

3|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

... <p>Thanks for ordering {{ product }} from {{ company }}. It's scheduled
.. toship on {{ ship_date|date:"F j, Y" }}.</p>

... {% if ordered_warranty %}
... <p>Your warranty information will be included in the packaging.</p>
.. {% endif %}
... <p>Sincerely,
{{ company }}</p>"""
>>>t = Template(raw_template)
>>> jmport datetime
>>> ¢ = Context{{'person_name": 'lohn Smith',
... 'product’: 'Super Lawn Mower',
... '‘company": 'Outdoor Equipment’,
.. 'ship_date': datetime.date(2009, 4, 2),
... 'ordered_warranty': True})
>>> t.render(c)
"<p>Dear John Smith,</p>\n\n<p>Thanks for ordering Super Lawn Mower from
Outdoor Equipment. It's scheduled \nto ship on April 2, 2009.</p>\n\n\n<p>Your
warranty information will be included in the
packaging.</p>\n\n\n<p>Sincerely,
Outdoor Equipment</p>"

Let’s step through this code one statement at a time:

* First, we import the classes Template and Context, which both live in the module
django.template. We save the raw text of our template into the variable aw_template.
Note that we use triple quote marks to designate the string, because it wraps over
multiple lines; in Python code, strings designated with single quote marks cannot be
wrapped over multiple lines.

* Next, we create a template object, “t”, by passing raw_template to the Template class
constructor. We import the datetime module from Python’s standard library, because
we’ll need it in the following statement.

* Then, we create a Context object, “c”, The Context constructor takes a Python dictionary,
which maps variable names to values. Here, for example, we specify that the
person_name is 'John Smith', product is 'Super Lawn Mower', and so forth.

¢ Finally, we call the render() method on our template object, passing it the context. This
returns the rendered template—that is, it replaces template variables with the actual
values of the variables, and it executes any block tags.

Note: that the warranty paragraph was displayed because the ordered_warranty variable
evaluated to True. Also note the date, April 2, 2024, which is displayed according to the format
string 'F j, Y.

Those are the fundamentals of using the Django template system:

* just write a template

s create a Template object

e create a Context, and

¢ call the render() method.

Multiple Contexts, Same Template

Once you have a Template object, you can render multiple contexts through it, for example:
>>> from django.template import Template, Context
>>>t = Template('Hello, {{ name }}')

4|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

>>> print t.render{Context({'name': 'John'}))

Hello, John

>>> print t.render{Context({'name': Julie'}))

Hello, Julie

>>> print t.render(Context({'name': 'Pat'}))

Hello, Pat
Whenever you’re using the same template source to render multiple contexts like this, it's
more efficient to create the Template object once, and then call render() on it multiple times:

Bad

for name in (John', 'lulie’, 'Pat’):

t = Template('Hello, {{ name }}')

print t.render(Context({'name': name}))

Good

t = Template('Hello, {{ name }}')

for name in ("lohn', 'lulie’, 'Pat'):

print t.render(Context({'name': name}))
Django’s template parsing is quite fast. Behind the scenes, most of the parsing happens
via a single call to a short regular expression. This is in stark contrast to XML-based template
engines, which incur the overhead of an XML parser and tend to be orders of magnitude
slower than Django’s template rendering engine.

Context Variable Lookup (Dictionary lookup, Attribute lookup, Method call, List-index lookup)

* |n the examples so far, we’'ve passed simple values in the contexts—mostly strings, plus a
datetime.date example.

e However, the template system elegantly handles more complex data structures, such as lists,
dictionaries, and custom objects.

¢ The key to traversing complex data structures in Django templates is the dot character (.).

e Use a dot to access dictionary keys, attributes, indices, or methods of an object. This is best
illustrated with a few examples.

e Forinstance, suppose you're passing a Python dictionary to a template. To access the values
of that dictionary by dictionary key, use a dot:

>>> from django.template import Template, Context

>>> person = {'name’: 'Shalini’, '‘age': 23"}

>>>t = Template('{{ person.name }} is {{ person.age }} years old.')
>>> ¢ = Context({'person': person})

>>> t.render(c)

'Shalini is 23 years old.'

e Similarly, dots also allow access of object attributes. For example, a Python datetime.date
object has year, month, and day attributes, and you can use a dot to access those attributes
in a Django template:

>>> from django.template import Template, Context

>>> import datetime

>>>d = datetime.date(2024, 5, 2)

>>>d.year 2024

>>>d.month 5

>>>d.day 2

>>>t = Template('The month is {{ date.month }} and the year is {{ date.year }}.')
>>> ¢ = Context({'date’: d})

5|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

>>> t.render(c)
‘The month is 5 and the year is 2024."

e This example uses a custom class:
>>> from django.template import Template, Context
>>>class Person{object):
... def _init__(self, first_name, last_name):
self.first_name, self.last_name = first_name, last_name
>>>t = Template('Hello, {{ person.first_name }} {{ person.last_name }}.")
>>> ¢ = Context({'person': Person('lohn’, 'Smith’]})
>>> t.render(c)
'Hello, John Smith."

e Dots are also used to call methods on objects. For example, each Python string has the
methods upper() and isdigit(), and you can call those in Django templates using the same dot
syntax:

>>> from django.template import Template, Context

>>>t = Template('{{ var }} -- {{ var.upper }} -- {{ var.isdigit }}')

>>> t.render(Context({'var" 'hello'}))

'hello -- HELLO -- False'

>>> t.render{Context({'var": '123'}))

123 -- 123 -- True'
Note: You don’tinclude parentheses in the method calls. Also, it’s not possible to pass arguments
to the methods; you can only call methods that have no required arguments.

e Finally, dots are also used to access list indices, for example:

>>> from django.template import Template, Context
>>>t = Template('ltem 2 is {{ items.2 }}.")

>>> ¢ = Context({'items’: ['apples’, 'bananas’, 'carrots']})
>>> t.render(c)

'ltem 2 is carrots.’

e Negative list indices are not allowed. For example, the template variable {{ items.-1}} would
cause a TemplateSyntaxError.

e Python lists have 0-based indices so that the first item isat index 0, the second is at index 1,
and so on.

The dot lookups can be summarized like this:
e when the template system encounters a dot in a variable name, it tries the following lookups,
in this order:

o Dictionary lookup (e.g.,foo["bar"])
o Attribute lookup (e.g., foo.bar)
o Methodcall (e.g., foo.bar())
o List-index lookup (e.g., foo[bar])

e The system uses the first lookup type that works. It’s short-circuit logic.

Dot lookups can be nested multiple levels deep.
e For instance, the following example uses {{ person.name.upper }}, which translates into a
dictionary lookup (person['name’]) and then a method call (upper()):

6|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

>>> from django.template import Template, Context

>>> person = {'name’: 'Shalini’, 'age': 23"}

>>>t = Template('{{ person.name.upper }} is {{ person.age }} years old.’)
>>> ¢ = Context({'person': person})

>>> t.render(c)

'SHALINI is 23 years old.'

Method Call Behavior

Method calls are slightly more complex than the other lookup types. Here are some things to
keep in mind:

e |f, during the method lookup, a method raises an exception, the exception will be propagated,
unless the exception has a silent_variable_failure attribute whose value is True.
e |f the exception does have a silent_variable failure attribute, the variable will render as an
empty string, for example:
>>>t = Template("My name is {{ person.first_name }}).")
>>> class PersonClass3:
def first_name(self):
raise AssertionError, "foo"
>>> p = PersonClass3()
>>> t.render(Context({"person": p}))
Traceback (most recent call last):

AssertionError: foo

>>> class SilentAssertionError(AssertionError):
silent_variable_failure = True

>>> class PersonClass4:
def first_name(self):

raise SilentAssertionError

>>> p = PersonClass4()

>>> t.render(Context({"person": p}))

"My nameis ."

e A method call will work only if the method has no required arguments. Otherwise, the system
will move to the next lookup type (list-index lookup).

e Obviously, some methods have side effects, and it would be foolish at best, and possibly even
a security hole, to allow the template system to access them. Say, for instance, you have a
BankAccount object that has a delete() method. A template shouldn’t be allowed to include
something like {{ account.delete }}. To prevent this, set the function attribute alters_data on
the method:

def delete(self):
Delete the account
delete.alters_data = True

e The template system won’t execute any method marked in this way. In other words, if a
template includes {{ account.delete }}, that tag will not execute the delete() method. It will fail
silently.

7|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

How Invalid Variables Are Handled

* By default, if a variable doesn’t exist, the template system renders it as an empty string, failing
silently, for example:
>>> from django.template import Template, Context
>>>t=Template('Your nameis {{ name }}.")
>>> t.render(Context())
Your name is .'
>>> t.render(Context({'var': 'hello'}))
'Your name is .'
>>> t.render(Context({'NAME': 'hello'}))
Your name is .'
>>> t.render(Context({'Name': 'hello'}))
Your name is .'
¢ The system fails silently rather than raising an exception because it’s intended to be resilient
to human error. In this case, all of the lookups failed because variable names have the wrong
case or name.
® |n the real world, it’s unacceptable for a Web site to become inaccessible due to a small
template syntax error.
o Note thatit's possible to change Django’s default behavior in this regard, by tweaking a setting
in our Django configuration. We discuss this further in Chapter “Generating Non-HTML
Content”.

Playing with Context Objects

e Most of the time, we'll instantiate Context objects by passing in a fully populated dictionary
to Context().
e Butwecanadd and deleteitems from a Context object once it's been instantiated, too, using
standard Python dictionary syntax:
>>> from django.template import Context
>>> ¢ = Context({"foo": "bar"})
>>>c['foo]
'bar’
>>>del c['foo']
>>> c¢['foo']
>>> c['newvariable’] = ‘hello’
>>> c['newvariable']
'hello’

Basic Template Tags and Filters (P40-47)

e The template system ships with built-in tags and filters. The following sections outline the common
Django tags.

Django tags : iffelse — for - ifequal/ifnotequal — Comments

8|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

“iffelse ”

e The {% if %} tag evaluates a variable, and if that variable is “true” (i.e., it exists, is not empty,
and is not a false Boolean value), the system will display everything between {% if %} and
{% endif %]}, for example:

{% if today_is_weekend %}
<p>Welcome to the weekend!</p>
{% endif %}

An {% else %} tag is optional:

{% if today_is_weekend %}
<p>Welcome to the weekend!</p>
{% else %)}

<p>Get back to work.</p>

{% endif %}

NOTE: In Python, the empty list ([]), tuple (()), dictionary ({}), string ("), zero (0), and the special object
None are
False in a Boolean context. Everything else is True.

e The {%if %} tag accepts and, or, or not for testing multiple variables, or to negate a given
variable.
e Here’s an example:
{% if athlete_list and coach_list %}
Both athletes and coaches are available.
{% endif %}

{% if not athlete_list %}
There are no athletes.
{% endif %}

{% if athlete_list or coach_list %}
There are some athletes or some coaches.
{% endif %}

{% if not athlete_list or coach_list %}
There are no athletes or there are some coaches. (OK, so writing English translations of

Boolean logic sounds stupid, it's not our fault.)
{% endif %}

{% if athlete_list and not coach_list %}
There are some athletes and absolutely no coaches.
{% endif %}

s {% if %} tags don’t allow “and” and “or” clauses within the same tag, because the order of

logic would be ambiguous. For example, this is invalid:
{% if athlete_list and coach_list or cheerleader_list %}

9|Page Prof. Parthasarathy P V URL:www.thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

e The use of parentheses for controlling order of operations is not supported. If you find
yourself needing parentheses, consider performing logicin the view code in order to simplify
the templates. Even so, if you need to combine “and” and “or” to do advanced logic, just use
nested. {% if %} tags, for example;

{% if athlete_list %)

{% if coach_list or cheerleader_list %}
We have athletes, and either coaches or cheerleaders!
{% endif %}
{% endif %}

o Multiple uses of the same logical operator are fine, but you can’t combine different
operators. For example, this is valid:
W athlete_list or coach_list or parent_list or teacher_list %} ‘
--------- There is no {% elif %) tag.
¢ Usenested {% if %} tags to accomplish the same thing:
{% if athlete_list %}
<p>Here are the athletes: {{ athlete_list }}.</p>
{% else %)}
<p>No athletes are available.</p>
{% if coach_list %}
<p>Here are the coaches: {{ coach_list }}.</p>
{% endif %}
{% endif %}
e Make sure to close each {% if %} with an {% endif %}. Otherwise, Django will throw
a TemplateSyntaxError.

kkkkk kR kR bk ki kk

13 »

or

e The {% for %} tag allows you to loop over each item in a sequence.

e As in Pythaon's for statement, the syntax is for X in Y, where Y is the sequence to loop over
and X is the name of the variable to use for a particular cycle of the loop. Each time through
the loop, the template system will render everything between {% for %} and {% endfor %}.

o For example, you could use the following to display a list of athletes given a variable
athlete_list:

{% for athlete in athlete_list %}
{{ athlete.name }}
{% endfor %}

e Addreversed to the tag to loop over the list in reverse:
{% for athlete in athlete_list reversed %}

{% endfor %}

10|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

e [t's possible to nest {% for %} tags:
{% for country in countries %}
<h1>{{ country.name }}</h1>

{% for city in country.city_list %}
{{ city }}
{% endfor %}

{% endfor %}
e Thereis no support for “breaking out” of a loop before the loop is finished.
e |f you want to accomplish this, change the variable you’re looping over so that it includes
only the values you want to loop over.
e Similarly, there is no support for a “continue” statement that would instruct the loop
processor to return immediately to the front of the loop.
e The {% for %} tag sets a magic forloop template variable within the loop. This variable
has a few attributes that give you information about the progress of the loop:

o forloop.counter is always set to an integer representing the number of times the loop
has been entered. This is one-indexed, so the first time through the loop, forloop.counter
will be setto 1.

¢ Here’s an example:

{% foritem in todo_list %}
<p>{{ forloop.counter }}: {{ item }}</p>
{% endfor %}

e forloop.counter0 is like forloop.counter, except it's zero-indexed. Its value will be set
to 0 the first time through the loop.

* forloop.revcounter is always set to an integer representing the number of remaining
items in the loop. The first time through the loop, forloop.revcounter will be set to the
total number of items in the sequence you're traversing. The last time through the loop,
forloop.revcounter will be set to 1.

e forloop.revcounter0 is like forloop.revcounter, except it's zero-indexed. The first time
through the loop, forloop.revcounter0 will be set to the number of elements in the
sequence minus 1. The last time through the loop, it will be set to 0.

o forloop.first is a Boolean value set to True if this is the first time through the loop. This is
convenient for special casing:

{% for object in objects %}
{% if forloop.first %}
<li class="first">
{% else %}
{% endif %}
{{ object }}

{% endfor %}
» forloop.last is a Boolean value set to True if this is the last time through the loop.
A common use for this is to put pipe characters between a list of links:

{% for link in links %}{{ link }{% if not forloop.last %} | {% endif %}=

11|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

{% endfor %}
The preceding template code might output something like this:

Linkyl | Linkz | Lirk3 | Linkg

forloop.parentloop is a reference to the forloop object for the parent loop, in case of
nested loops. Here’s an example:
{% for country in countries %}
<table>
{% for city in country.city_list %}
<tr>
<td>Country #{{ forloop.parentloop.counter }}</td>
<td>City #{{ forloop.counter }}</td>
<td>{{ city }}</td>
</tr>
{% endfor %}
</table>
{% endfor %}
The magic forloop variable is only available within loops. After the template parser has

reached {% endfor %}, forloop disappears.
kkkkkkkkkkkkkkkkk

“ifequal/ifnotequal ”

The Django template system deliberately is not a full-fledged programming language and
thus does not allow you to execute arbitrary Python statements.
However, it's quite a common template requirement to compare two values and display
something if they’re equal—and Django provides an {% ifequal %} tag for that purpose.
The {% ifequal %} tag compares two values and displays everything between {% ifequal %} and
{% endifequal %} if the values are equal. This example compares the template variables user
and currentuser:
{% ifequal user currentuser %}
<hi>Welcomel</h1>
{% endifequal %}
The arguments can be hard-coded strings, with either single or double quotes, so the following
is valid:
{% ifequal section 'sitenews' %}
<h1>Site News</h1>
{% endifequal %}
{% ifequal section "community" %}
<h1>Community</h1>
{% endifequal %}
Just like {% if %}, the {% ifequal %} tag supports an optional {% else %}:
{% ifequal section 'sitenews' %}
<h1>Site News</h1>
{% else %}
<h1>No News Here</h1>
{% endifequal %}

12|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

Only template variables, strings, integers, and decimal numbers are allowed as arguments
to {% ifequal %}. These are valid examples:

{% ifequal variable 1 %}

{% ifequal variable 1.23 %}

{% ifequal variable foo' %}

{% ifequal variable "foo" %}
Any other types of variables, such as Python dictionaries, lists, or Booleans, can’t be
hardcoded in {% ifequal %}. These are invalid examples:

{% ifequal variable True %}

{% ifequal variable [1, 2, 3] %}

{% ifequal variable {'key': 'value'} %}
If you need to test whether something is true or false, use the {% if %} tags instead of

{% ifequal %}.

dkok ok kk ok okokok kkkkk ok

Comments

Just as in HTML or in a programming language such as Python, the Django template language
allows for comments. To desighate a comment, use {# #}:

{#This is a comment #}
The comment will not be output when the template is rendered.
A comment cannot span multiple lines. This limitation improves template parsing
performance.
Inthe following template, the rendered output will look exactly the same as the template (i.e.,
the comment tag will not be parsed asa comment):

This is a {# this is not

a comment #}

test.

Filters

Template filters are simple ways of altering the value of variables before they're displayed.
Filters look like this:
{{ name]|lower }}
This displays the value of the {{ name }} variable after being filtered through the lower
filter, which converts text to lowercase. Use a pipe (|) to apply a filter.
Filters can be chained—that is, the output of one filter is applied to the next. Here’'s
a common idiom for escaping text contents and then converting line breaks to <p> tags:
{{ my_text|escape|linebreaks }}
Some filters take arguments. A filter argument looks like this: {{ bio|truncatewords:"30" }}.
This displays the first 30 words of the bio variable. Filter arguments are always in double

quotes.

The following are a few of the most important filters.

addslashes: Adds a backslash before any backslash, single quote, or double quote. This
is useful if the produced text is included in a JavaScript string.

date: Formats a date or datetime object according to a format string given in the parameter,
for example: {{ pub_date|date:"F j, Y" }}.

escape: Escapes ampersands, quotes, and angle brackets in the given string. This is useful for
sanitizing user-submitted data and for ensuring data is valid XML or XHTML.

13|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

Specifically, escape makes these conversions:
o Converts & to &
o Converts<to<
o Converts >to>
o Converts " (double quote) to "
o Converts ' (single quote) to'
length: Returns the length of the value. You can use this on a list or a string, or any Python

object that knows how to determine its length (i.e., any object that hasa __len_ () method).
kkkkkkkkhkkbkkkkkkk

Using Templates in Views

We've learned the basics of using the template system; now let’s use this knowledge to create
a view. Recall the current_datetime view in mysite.views, which we started in the previous
chapter, Here's what it looks like:
from django.http import HttpResponse
import datetime

def current_datetime(request):
now = datetime.datetime.now()
html = "<htmI><body>lt is now %s.</body></htm!>" % now
return HttpResponse(html)

Let’s change this view to use Django’s template system. At first, you might think to do
something like this:

from django.template import Template, Context
from django.http import HttpResponse
import datetime

def current_datetime(request):
now = datetime.datetime.now()
t = Template("<htmi><body>It is now {{ current_date }}.</body></html>")
html = t.render(Context({'current_date': now}))
return HttpResponse(html)

Sure, that uses the template system, but it doesn’t solve the problems we pointed out in
the introduction of this chapter. Namely, the template is still embedded in the Python code.
Let’s fix that by putting the template in a separate file, which this view will load.

We might first consider saving our template somewhere on our filesystem and using
Python’s built-in file-opening functionality to read the contents of the template. Here’s what
that might look like, assuming the template was saved as the file
/home/djangouser/templates/

mytemplate.html:

from django.template import Template, Context
from django.http import HttpResponse
import datetime

def current_datetime(request):

14|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

now = datetime.datetime.now()

Simple way of using templates from the filesystem.

This doesn't account for missing files!

fp = open('/home/djangouser/templates/mytemplate.html’)
t = Template(fp.read())

fp.close()

html = t.render(Context({'current_date': now}))

return HttpResponse(html)

This approach, however, is inelegant for these reasons:

¢ |t doesn’t handle the case of a missing file. If the file mytemplate.htm| doesn’t exist or
isn't readable, the open() call will raise an I0Error exception.

e |t hard-codes your template location. If we were to use this technique for every view
function, you’d be duplicating the template locations. Not to mention it involves a lot of
typing!

¢ ltincludes a lot of boring boilerplate code. You've got better things to do than write calls
to open(), fp.read(), and fp.close() each time you load a template.

* Tosolve these issues, we’ll use template loading and template directories.

Template Loading (P49-54)

* Django provides a convenient and powerful APl for loading templates from disk, with the
goal of removing redundancy both in your template-loading calls and in your templates
themselves.

* |n order to use this template-loading API, first we’ll need to tell the framework where we
store our templates. The place to do this is in our settings file.

* A Django settings file is the place to put configuration for our Django instance. It's a simple
Python module with module-level variables, one for each setting. When we ran django-
admin.py startproject mysite, the script created a default settings file for you, aptly named
settings.py. Have a look at the file’s contents. It contains variables that look like this (though
not necessarily in this order):

DEBUG = True

TIME_ZONE = 'America/Chicago’

USE_I18N = True

ROOT_URLCONF = 'mysite.urls’

* This is pretty self-explanatory; the settings and their respective values are simple Python
variables. And because the settings file is just a plain Python module, we can do dynamic
things such as checking the value of one variable before setting another.

» Have a look at the TEMPLATE_DIRS setting. This setting tells Django’s template-loading
mechanism where to look for templates. By default, it's an empty tuple. Pick a directory where
you'd like to store your templates and add it to TEMPLATE_DIRS, like so:

TEMPLATE_DIRS = (
'/home/django/mysite/templates’,
)

There are a few things to note:

* We can specify any directory we want, as long as the directory and templates within
that directory are readable by the user account under which your Web server runs. If

i5|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

we can't think of an appropriate place to put our templates, we recommend creating
a templates directory within our Django project (i.e., within the mysite directory you
created).

» Don't forget the comma at the end of the template directory string! Python requires
commas within single-element tuples to disambiguate the tuple from a parenthetical
expression. If we want to avoid this error, we can make TEMPLATE DIRS a list instead of a
tuple, because single-element lists don’t require a trailing comma:

TEMPLATE_DIRS = [
'/home/django/mysite/templates'
1

* A tuple is slightly more semantically correct than a list (tuples cannot be changed after
being created, and nothing should be changing settings once they’ve been read), so we
recommend using a tuple for your TEMPLATE_DIRS setting.

» [f you’re on Windows, include your drive letter and use Unix-style forward slashes rather than
backslashes, as follows. It’s simplest to use absolute paths (i.e., directory paths that start at the
root of the filesystem).

* With TEMPLATE_DIRS set, the next step is to change the view code to use Django's
templateloading functionality rather than hard-coding the template paths. Returning to our
current_datetime view, let’s change it like so:

from django.template.loader import get_template

from django.template import Context

from django.http import HttpResponse

import datetime

def current_datetime(request):
now = datetime.datetime.nowf()
t = get_template('current_datetime.html’)
html = t.render(Context({'current_date’: now}))
return HttpResponse(html)

* |nthis example, we're using the function django.template.loader.get_template() rather than
loading the template from the filesystem manually. The get_template() function takes
atemplate name asits argument, figures out where the template lives on the filesystem, opens
that file, and returns a compiled Template object.

* |f get_template() cannot find the template with the given name, it raises a
TemplateDoesNotExist exception. To see what that looks like, fire up the Django development
server again, by running python manage.py runserver within your Django project’s directory.

* Then, point your browser at the page that activates the current_datetime view (e.g.,
http://127.0.0.1:8000/time/). Assuming your DEBUG setting is
set to True and you haven’t yet created a current_datetime.html template, you should see
a Django error page highlighting the TemplateDoesNotExist error, as shown in Figure:

BHG RO AL fii, (=1

TemplateDoesNotExist at fime/
current_daiatme.himi

B st M

o fird_teeplale_sousce. bne T2
Template-loader postmoneam
Nareges Vi bt st swusditon. ilnis vek
+ Using homecr @y

gl T dHrwctarinn. Tad bemslabe soirve

» Akoe, Jucn Aater . bl [Pk Soas not e
« Ao H nt_ctet!ne. htnl (Fio doss sl mst)

16|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

As we can probably tell from the error messages found in the above Figure, Django attempted
to find the template by combining the directory in the TEMPLATE_DIRS setting with the
template name passed to get_template().
So if our TEMPLATE_DIRS contains '/home/django/templates', Django looks for the file
'/home/django/templates/current_datetime.html'.
If TEMPLATE_DIRS contains more than one directory, each is checked until the template is
found or they've all been checked. Moving along, create the current_datetime.html file within
our template directory using the following template code:

<htmlI><body>It is now {{ current_date }}.</body></html>

Refresh the page in our Web browser, and we should see the fully rendered page.
kkkkkkbkk kR kkkkkk

Topics covered: render_to_response() - The locals() Trick - Subdirectories in
get_template() - The include Template Tag

ko ko kb ok kokok sk ok ok kb ok

“render_to_response()”

Because it’s such a common idiom to load a template, fill a Context, and return an
HttpResponse object with the result of the rendered template, Django provides a shortcut
that lets us do those thingsin one line of code.
This shortcut is a function called render_to_response(), which lives in the module
django.shortcuts.
Most of the time, we'll be using render_to_response() rather than loading templates and
creating Context and HttpResponse objects manually.
Here's the ongaoing current_datetime example rewritten to use render_to_response():

from django.shortcuts import render_to_response

import datetime

def current_datetime(request):

now = datetime.datetime.now()
return render_to_response('current_datetime.html', {'current_date': now})

We no longer have to import get_template, Template, Context, or HttpResponse. Instead,
we import django.shortcuts.render_to_response. The import datetime remains,
Within the current_datetime function, we still calculate now, but the template loading,
context creation, template rendering, and HttpResponse creation is all taken care of by the
render_to_response() call. Because render_to_response() returns an HttpResponse object,
we can simply return that value in the view.
The first argument to render_to_response() should be the name of the template to use.
The second argument, if given, should be a dictionary to use in creating a Context for that
template. If you don’t provide a second argument, render_to_response() will use an empty
dictionary.

LR R R LR R b

“The locals() Trick”

Consider our latest incarnation of current_datetime:
def current_datetime(request):
now = datetime.datetime.now()
return render_to_response('current_datetime.html’, {'current_date": now})

17 |Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

21C562 FULL STACK DEVELOPMENT

Many times, as in this example, we’ll find ourself calculating some values, storing them
in variables (e.g., now in the preceding code), and sending those variables to the template.
Particularly lazy programmers should note that it's slightly redundant to have to give names
for temporary variables and give names for the template variables. Not only is it redundant,
but alsoit’s extra typing.
So if you're one of those lazy programmers and you like keeping code particularly concise,
you can take advantage of a built-in Python function called locals(). It returns a dictionary
mapping all local variable names to their values. Thus, the preceding view could be rewritten
like so:
def current_datetime(request):

current_date = datetime.datetime.now()

return render_to_response('current_datetime.html’, locals())
Here, instead of manually specifying the context dictionary as before, we pass the value of
locals(), which will include all variables defined at that point in the function’s execution. As
a consequence, we've renamed the now variable to current_date, because that’s the variable
name that the template expects.
One thing to watch out for when using locals() is that it includes every local variable, which
may comprise more variables than we actually want our template to have access to. In the
previous example, locals() will also include request. Whether this matters to us depends on
our application.
A final thing to consider is that locals() incurs a small bit of overhead, because when you
call it, Python has to create the dictionary dynamically. If we specify the context dictionary

manually, we avoid this overhead,
fdkkdkkkkkkkkkkkkk

“Subdirectories in get_template()”

Storing templates in subdirectories of our template directory is easy. In our calls to
get_template(), just include the subdirectory name and a slash before the template name, like
so: t = get_template('dateapp/current_datetime.html')

Because render_to_response() is a small wrapper around get_template(), you can do the
same thing with the first argument to render_to_response().

There’s no limit to the depth of your subdirectory tree. Feel free to use as many as you like.
kkkkkkkkkkkkkkkbkdk

“The include Template Tag”

A built-in template tag that takes advantage of it: {% include %}. This tag allows you to include
the contents of another template. The argument to the tag should be the name ofthe template
to include, and the template name can be either a variable or a hard-coded (quoted) string, in
either single or double quotes. Anytime you have the same code in multiple templates,
consider using an {% include %} to remove the duplication.
These two examples include the contents of the template nav.html. The examples are
equivalent and illustrate that either single or double quotes are allowed:

{% include 'nav.html" %}

{% include "nav.html!" %}
This example includes the contents of the template includes/nav.htmil:

{% include 'includes/nav.html' %}
This example includes the contents of the template whose name is contained in the variable
template_name: {% include template_name %}

18| Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

As in get_template(), the file name of the template is determined by adding the template
directory from TEMPLATE_DIRS to the requested template name.
Included templates are evaluated with the context of the template that’s including them.
If a template with the given name isn’t found, Django will do one of two things:
1. If DEBUG is set to True, you'll see the TemplateDoesNotExist exception on a Django
error page.
2. If DEBUG is set to False, the tag will fail silently, displaying nothing in the place of the
tag.

Template Inheritance (P54-58)

In the real world, we’ll be using Django’s template system to create entire HTML pages.
Thisleads to a common Web development problem: across a Web site, how does one reduce
the duplication and redundancy of common page areas, such assitewide navigation?

A classic way of solving this problem is to use server-side includes, directives you can embed
within your HTML pages to “include” one Web page inside another.

Indeed, Django supports that approach, with the {% include %} template tag. However, the
preferred way of solving this problem with Django is to use a more elegant strategy called
template inheritance. In essence, template inheritance lets you build a base “skeleton”
template that contains all the common parts of your site and defines “blocks” that child

templates can override.

* Let’s see an example of this by creating a more
complete template for our current datetime
view, by editing the current datetime.html file:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4,01//EN">
<html lang="en">
<head>
<title>The current time</title>
</head>
<body>
<h1>My helpful timestamp site</h1>
<p>It is now {{ current_date }}.</p>

<hr>

<p>Thanks for visiting my site.</p>
</body>
</html>

What happens when we want to create a
template for another view —say, the
hours ahead view full HTML template, we’d
create something like:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4.01//EN">
<htmllang="en">
<head>
<title>Future time</title>
</head>
<body>
<h1>My helpful timestamp site</h1>
<p>in {{ hour_offset }} hour(s), it will
be {{ next_time }}.</p>
<hr>
<p>Thanks for visiting my site.</p>
</body>
</html>

* The server-side include solution to this problem is to factor out the common bits in both
templates and save them in separate template snippets, which are then included in each
template. Perhaps we'’d store the top bit of the template in a file called header.htm!:

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html lang="en">
<head>

19 |Page Prof. Parthasarathy P V

URL:www .thagadoor.in/vtu/21cs62

210562 FULL STACK DEVELOPMENT

And perhaps you'd store the bottom bit in a file called footer.html:
<hr>
<p>Thanks for visiting my site.</p>
</body>
</html>
With an include-based strategy, headers and footers are easy. It's the middle ground that’s
messy. In this example, both pages feature a title - <h1>My helpful timestamp site</h1> - but
that title can’t fit into header. html because the <title> on both pages is different. If we included
the <h1>in the header, we'd have to include the <title>, which wouldn’t allow us to customize
it per page.
Django’s template inheritance system solves these problems. We can think of it as an “inside-
out” version of server-side includes. Instead of defining the snippets that are common, we
define the snippets that are different.
The first step is to define a base template—a skeleton of your page that child templates will
later fill in. Here’s a base template for our ongoing example:
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN ">
<html lang="en">
<head>
<title>{% block title % }{% endblock % }</title>
</head>
<body>
<h1>My helpful timestamp site</h1>
{% block content %}{% endblock %}
{% block footer %}
<hr>
<p>Thanks for visiting my site.</p>
{% endblock %}
</body>
</html>

This template, which we’ll call base.html, defines a simple HTML skeleton document that we’ll
use for all the pages on the site. It’s the job of child templates to override, or add to, or leave
alone the contents of the blocks.

We're using a template tag here that you haven’t seen before: the {% block %} tag. All the
{% block %)} tags do is tell the template engine that a child template may override those
portions of the template.

Now that we have this base template, we can | ® Let's create a template for the hours_ahead view

modify our existing current_datetime.html look like:
template to use it:
{% extends "base.html" %} {% extends "base.html" %}

{% block title %}The current time {% endblock %} {% block title %}Future time{% endblock %}

{% block content %} {% block content %}
<p>it is now {{ current_date }}.</p> <p>In {{ hour_offset }} hour(s), it will be {{ next_time }}.</p>
{% endblock %} {% endblock %}

20|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

210562 FULL STACK DEVELOPMENT

Each template contains only the code that’s unique to that template. No redundancy needed.
If you need to make a site-wide design change, just make the change to base.html, and all of
the other templates will immediately reflect the change.

When you load the template current_datetime.html, the template engine sees the {% extends
%} tag, noting that this template is a child template. The engine immediately loads the parent
template—in this case, base.html.

At that point, the template engine notices the three {% block %} tags in base.html and replaces
those blocks with the contents of the child template. So, the title we’ve defined in {% block
title %} will be used, as will the {% block content %}.

Note: Since the child template doesn’t define the footer block, the template system uses the value
from the parent template instead. Content within a {% block %} tag in a parent template is always
used as a fallback.

Inheritance doesn’t affect the way the context works, and you can use as many levels of
inheritance as needed. One common way of using inheritance is the following three-level
approach:

o Create a base.html template that holds the main look and feel of your site. This stuff
rarely, if ever, changes.

o Create a base SECTION.html template for each “section” of your site (e.g.,
base_photos.html and base_forum.html). These templates extend base.htm! and
include section-specific styles/design.

o Create individual templates for each type of page, such as a forum page or a photo
gallery. These templates extend the appropriate section template.

This approach maximizes code reuse and makes it easy to add items to shared areas, such as
section-wide navigation.

Here are some tips for working with template inheritance:

o If we use {% extends %} in a template, it must be the first template tag in that template.
Otherwise, template inheritance won’t work.

o Generally, the more {% block %} tags in our base templates, the better.

o Ifwe find ourself duplicating code in a number of templates, it probably means we should
move that code to a {% block %} in a parent template.

o If we need to get the content of the block from the parent template, the {{ block.super }}
variable will do the trick. This is useful if you want to add to the contents of a parent block
instead of completely overriding it.

o We may not define multiple {% block %} tags with the same name in the same template.
This limitation exists because a block tag works in “both” directions. That is, a block tag
doesn’t just provide a hole to fill, it also defines the content that fills the hole in the parent.
If there were two similarly named {% block %) tags in a template, that template’s parent
wouldn’t know which one of the blocks’ content to use.

o The template name we pass to {% extends %} is loaded using the same method that
get_template() uses. That is, the template name is appended to our TEMPLATE_DIRS
setting.

o In most cases, the argument to {% extends %} will be a string, but it can also be a variable,
if you don’t know the name of the parent template until runtime.

21|Page Prof. Parthasarathy P V URL:www.thagadoor.in/viu/21cs62

