21CS62 FULL STACK DEVELOPMENT

Server-side website programming (https://developer.mozilla.org/en-US/docs/Learn/Server-side)

¢ The Dynamic Websites —Server-side programming topic is a series of modules that show how
to create dynamic websites; websites that deliver customized information in response to HTTP
requests.

» The modules provide a general introduction to server-side programming, along with specific
beginner-level guides on how to use the Django (Python) and Express (Node.js/JavaScript) web
frameworks to create basic applications.

¢ Most major websites use some kind of server-side technology to dynamically display data as
required. For example, imagine how many products are available on Amazon, and imagine
how many posts have been written on Facebook. Displaying all of these using different static
pages would be extremely inefficient, so instead such sites display static templates (built using
HTML, CSS, and JavaScript), and then dynamically update the data displayed inside those
templates when needed, such as when you want to view a different product on Amazon.

* |n the modern world of web development, learning about server-side development is highly
recommended.

Learning pathway

s Expertise in client-side coding is not required, but a basicknowledge will help you work better
with the developers creating your client-side web "front end".
¢ You will need to understand "how the web works". We recommend that you first read the
following topics:
o Whatis a web server
o What software do | need to build a website?
o How do you upload files to a web server?

What is a web server?

* The term web server can refer to hardware or software, or both of them working together.
* On the hardware side, a web server is a

computer that stores web server software and
a website's component files (for example, Syaten
HTML documents, images, CSS stylesheets,
and JavaScript files). A web server connects to
the Internet and supports physical data
_ HTTP Reguest

interchange with other devices connected to et
Web Server HTTF Response Web Browser

the web. Search Achol

* On the software side, a web server includes
several parts that control how web users access hosted files. At a minimum, this is an HTTP
server. An HTTP server is software that understands URLs (web addresses) and HTTP (the
protocol your browser uses to view webpages). An HTTP server can be accessed through the
domain names of the websites it stores, and it delivers the content of these hosted websites
to the end user's device.

o A static web server, or stack, consists of a computer (hardware) with an HTTP server
(software). We call it "static" because the server sends its hosted files as-is to your
browser.

o A dynamic web server consists of a static web server plus extra software, most
commonly an application server and a database. We call it "dynamic" because the
application server updates the hosted files before sending content to your browser
via the HTTP server.

1|Page Prof. Parthasarathy P V (V) 8961623822

21CS62 FULL STACK DEVELOPMENT

Module-1: MVC based Web Designing

Web framework, MVC Design Pattern. Django Evolution, Views, Mapping URL to Views, Working
of Django URL Confs and Loose Coupling, Errors in Django, Wild Card Patterns in URLs.

What Is a Web Framework?

A Web framework provides

- a programming infrastructure for your applications, so that you can focus on writing clean,
maintainable code without having to reinvent the wheel. In a nutshell, that's what Django
does.

But as a Web application grows beyond the trivial, this approach breaks down, and you face a
number of problems:

e What happens when multiple pages need to connect to the database? Surely that
database-connecting code shouldn’t be duplicated in each individual CGI script, so the
pragmatic thing to do would be to refactor it into a shared function.

e Should a developer really have to worry about printing the “Content-Type” line and
remembering to close the database connection? This sort of boilerplate reduces
programmer productivity and introduces opportunities for mistakes. These setup- and
teardown-related tasks would best be handled by some common infrastructure.

e What happens when this code is reused in multiple environments, each with a separate
database and password? At this point, some environment-specific configuration becomes
essential.

e What happens when a Web designer who has no experience coding Python wishes to
redesign the page? Ideally, the logic of the page — the retrieval of books from the database
— would be separate fram the HTML display of the page, so that a designer could edit the
latter without affecting the former.

These problems are precisely what a Web framework intends to solve.

The MVC Design Pattern

#!/asz/bin/pythan t modals.py (the database tables)

: from django.db inport models

import MySQLdb

class Book (models.Model] @

pript *Content-Type: text/html" name = models. CharField (maxlength=s0)

print pub_dite = models.lateField(}

print “<html><head><title>Books</title></head>"

print *<body>* # views.py (the business logic)

print "<hl>Books</hl>"
; Mg from django.shortcuts import render_to_response

print " from models import Sook

connection = My5QLdb.connect (user='me', passwd='letmein', db='my_db'} def latest books{request):
cursor = connection.cursor() book_list = Book.objects.order by ('-pub_date'j[:10]
cursor .execute ("SELECT name FROM books ORDER BY pub_date DESC LIMIT 10%)
for row in cursor,fetchall{):

print ®§s" & rowl[O] # urls.py (the URL configuratlom)

print "" i:;:j::z:;cun!.urlu.ﬁel’au.‘lts import *

print “</body></html>"

urlpatterns = patterns{'’,
ir'latest/§", views,latest books),

connection.close ()]

raturs rendes_to_responsel'latest besks.heml!, [‘hesk_list': bast_list))

2|Page Prof. Parthasarathy P V (M) 8961623822

21CS62 FULL STACK DEVELOPMENT

latest_books.html (the template)

<html><head><title>Bocks</title></head>
<body>

<hl>Booka</hl>

(% for book in book_list %)

<1i={{ bool.name)}</1i>

% endfor %)

<fuls>

</body></html>

The main thing to note here is the separation of concerns:

e The models.py file contains a description of the database table, as a Python class. This is
called a model. Using this class, you can create, retrieve, update, and delete records in your
database using simple Python code rather than writing repetitive SQL statements.

e The views.pyfile contains the business logic for the page, inthe latest books() function. This
function is called a view.

e The urls.py file specifies which view is called for a given URL pattern. In this case, the URL
[latest/ will be handled by the latest books() function.
e The latest books.htmlis an HTML template that describes the design of the page.

Taken together, these pieces loosely follow the Model-View-Controller (MVC) design pattern.

e MVC defines a way of developing software so that the code for defining and accessing data

(the model) is separate from request routing logic (the controller), which in turn is separate
from the user interface (the view).

= Akey advantage of such an approach is that components are loosely coupled.

= That is, each distinct piece of a Django-powered Web application has a single key purpose
and can be changed independently without affecting the other pieces.

® For example, a developer can change the URL for a given part of the application without
affecting the underlying implementation.

® Adesigner can change a page’s HTML without having to touch the Python code that renders
it. A database administrator can rename a database table and specify the change in a single
place, rather than having to search and replace through a dozen files.

Django’s History

e |f you've been building Web applications for a while, you're probably familiar with the
problems in the CGl example we presented earlier. The classic Web developer’s path goes
something like this;

1. Write a Web application from scratch.

2. Write another Web application from scratch.

3. Realize the application from step 1 shares much in common with the application from
step 2.

4. Refactor the code so that application 1 shares code with application 2.

5. Repeat steps 2-4 several times.

6. Realize you've invented a framework.

This is precisely how Django itself was created!

* Django grew organically from real-world applications written by a Web development team
in Lawrence, Kansas. It was born in the fall of 2003, when the Web programmers at the

3|Page Prof. Parthasarathy P V (M) 8961623822

21CS62 FULL STACK DEVELOPMENT

Lawrence Journal-World newspaper, Adrian Holovaty and Simon Willison, began using
Python to build applications.

* The World Online team, responsible for the production and maintenance of several local
news sites, thrived in a development environment dictated by journalism deadlines.

® For the sites — including LIWorld.com, Lawrence.com, and KUsports.com — journalists
(and management) demanded that features be added and entire applications be builton an
intensely fast schedule, often with only days’ or hours’ notice.

e Thus, Adrian and Simon developed a time-saving Web development framework out of
necessity — it was the only way they could build maintainable applications under the
extreme deadlines.

e Insummer 2005, after having developed this framework to a point where it was efficiently
powering most of World Online’s sites, the World Online team, which now included Jacob
Kaplan-Moss, decided to release the framework as open source software. They released it
inJuly 2005 and named it Django, after the jazz guitarist Django Reinhardt.

o Although Django is now an open source project with contributors across the planet, the
original World Online developers still provide central guidance for the framework’s growth,
and World Online contributes other important aspects such as employee time, marketing
materials, and hosting/bandwidth for the framework’s Web site
(http://www.djangoproject.com/).

s This history is relevant because it helps explain two key matters.

1. The first is Django’s “sweet spot.” Because Django was born in a news environment,
it offers several features (particularly its admin interface) that are particularly well
suited for “content” sites — sites like eBay, craigslist.org, and washingtonpost.com
that offer dynamic, database-driven information.

2. The second matter to note is how Django’s origins have shaped the culture of its
open source community. Because Django was extracted from real-world code, rather
than being an academic exercise or commercial product, it is acutely focused on
solving Web development problems that Django’s developers themselves have faced
— and continue to face.

Required Programming Knowledge

e Readers of this book should understand the basics of procedural and object-oriented
programming: control structures (if, while, and for), data structures (lists,
hashes/dictionaries), variables, classes, and objects.

e Experience in Web development is, as you may expect, very helpful, but it's not required to
read this book.

Required Python Knowledge

e At its core, Django is simply a collection of libraries written in the Python programming
language. To develop a site using Django, you write Python code that uses these libraries.

e Learning Django, then, is a matter of learning how to program in Python and understanding
how the Django libraries work.

e [fyouhave experience programming in Python, you should have no trouble diving in.

e By and large, the Django code doesn’t perform “black magic” (i.e., programming trickery
whose implementation is difficult to explain or understand). For you, learning Django will be
a matter of learning Django’s conventions and APls.

4|Page Prof. Parthasarathy P V (V) 8961623822

21CS62 FULL STACK DEVELOPMENT

Python tutorial, available online at http://docs.python.org/tut/. We also recommend Mark
Pilgrim’s free book Dive Into Python, available at http://www.diveintopython.org/ and
published in print by Apress.

Django - Views

As our first goal, let’s create a Web page that displays the current date and time. This is a
good example of a dynamic Web page, because the contents of the page are not static.
To create this page, we’ll write a view function. A view function, or view for short, is simply
a Python function that takes a Web request and returns a Web response. This response can
be the HTML contents of a Web page, or a redirect, or a 404 error, or an XML document, or
animage. .. or anything, really.
The view itself contains whatever arbitrary logic is necessary to return that response. This
code can live anywhere you want, as long as it’s on your Python path.
Let’s create a file called views.py in the mysite directory.
Here’s a view that returns the current date and time, asan HTML document:
from django.http import HttpResponse
import datetime
def current_datetime(request):
now = datetime.datetime.nowy)
html = "<htmi><body>It is now %s.</body></html>" % now
return HttpResponse(html)

The first line of code within the function calculates the current date/time as a datetime.
datetime object, and stores that as the local variable now.

The second line of code within the function constructs an HTML response using Python’s
format-string capability. The %s within the string is a placeholder, and the percent sign after
the string means “Replace the %s with the value of the variable now.”

Finally, the view returns an HttpResponse object that contains the generated response. Each
view function is responsible for returning an HttpResponse object.

Mapping URL to Views

This view function returns an HTML page that includes the current date and time. But how
do we tell Django to use this code? That's where URLconfs come in.
A URlLconf is like a table of contents for your Django-powered Web site.

Basically, it's a mapping between URL patterns and the view functions that should be called
for those URL patterns. It’s how you tell Django, “For this URL, call this code”.

Remember that the view
functions need to be on the from django.conf.urls.defaults import *
Python path.

When you executed django-
admin.py startproject, the
scriptcreated a URLconf for

urlpatterns = patterns('’,
Example:
(x'*mysite/', include('mysite.apps.foo.urls.foo")),

us automatically: the file # Uncomment this for admin:
urls.py. By default, it looks = (r'#admin/', include('django.contrib.admin.urls")),
something like this-------- > I)

5|Page Prof. Parthasarathy P V (M) 8961623822

21CS62 FULL STACK DEVELOPMENT

e Let's step through this code one line at a time:

o

o}

The first line imports all objects from the django.conf.urls.defaults module, including
a function called patterns.

The second line calls the function patterns() and saves the result into a variable called
urlpatterns. The patterns() function gets passed only a single argument—the empty
string.

e The main thing to note here is the variable urlpatterns, which Django expects to find in your
ROOT_URLCONF module. This variable defines the mapping between URLs and the code
that handles those URLs.

e By default, everything in the URLconf is commented out—your Django application is a blank

slate.

e Let’s edit this file to expose our current_datetime view:

from django.conf.urls.defaults import *
from mysite.views import current_datetime

urlpatterns = pattexns('’,
(xr'~time/$', current datetime),

)

* We made two changes here.

O

First, we imported the current_datetime view from its module (mysite/views.py,
which translates into mysite.views in Python import syntax).

Next, we added the line (r'~time/$', current_datetime),. This line is referred to as a
URLpattern—it’s a Python tuple in which the first element is a simple regular
expression and the second element is the view function to use for that pattern.

e Ina nutshell, we just told Django that any request to the URL /time/ should be handled by
the current_datetime view function. A few things are worth pointing out:

0]

6|Page

Note that, in this example, we passed the current_datetime view function as an
object without calling the function. This is a key feature of Python (and other dynamic
languages): functions are first-class objects, which means you can pass them around
just like any other variables.
The r in r'Atime/$' means that 'Atime/$ is a Python raw string. This allows regular
expressions to be written without overly verbose escaping.
We should exclude the expected slash at the beginning of the 'Atime/$' expression
in order to match /time/. Django automatically puts a slash before every
expression.
At first glance, this may seem odd, but URLconfs can be included in other URLconfs,
and leaving off the leading slash simplifies matters.
The caret character (*) and dollar sign character ($) are important.
= The caret means “require that the pattern matches the start of the string,”
= The dollar sigh means “require that the pattern matches the end of the
string.”

Prof. Parthasarathy P V (M) 8961623822

21CS62 FULL STACK DEVELOPMENT

How Django Processes a Request: Complete Details

Figure. Thecompiete flow of a Django requestand respoise
b il

Browser

HTTP

L ModPythonHandler J

/
HtipRequest
S

Request Response

Middleware Middleware

Respt:nse‘? 404/500
Response

------------------ Request Exception Handler-1 - = = ===« == - lowonn

URLConf
| Response
View < Middleware
{ Middleware Response? &
| Exce:ptinn

------------ -« -=-=- View Exception Handler- - - - == ===+ -cccnumn-

Y

View }— Response —

Working of Django URLConfs and Loose Coupling

Now’s a good time to highlight a key philosophy behind URLconfs and behind Django in
general: the principle of loose coupling.

Loose coupling is a software-development approach that values the importance of making
pieces interchangeable. If two pieces of code are loosely coupled, then changes made to one
of the pieces will have little or no effect on the other.

Django’s URLconfs are a good example of this principle in practice.

Ina Django Web application, the URL definitions and the view functions they call are loosely
coupled; that is, the decision of what the URL should be for a given function, and the
implementation of the function itself, reside in two separate places. This lets a developer

switch out one piece without affecting the other.

In contrast, other Web development platforms couple the URL to the program. In typical
PHP (http://www.php.net/) applications, for example, the URL of your application is
designated by where you place the code on your filesystem. In early versions of the CherryPy
Python Web framework (http://www.cherrypy.org/), the URL of your application

7|Page Prof. Parthasarathy P V (V) 8961623822

21CS62 FULL STACK DEVELOPMENT

corresponded to the name of the method in which your code lived. This may seem like a
convenient shortcut in the short term, but it can get unmanageable in the long run.

e For example, consider the view function we wrote earlier, which displays the current date
and time. If we wanted to change the URL for the application— say, move it from /time/ to
[currenttime/—we could make a quick change to the URLconf, without having to worry
about the underlying implementation of the function.

e Similarly, if we wanted to change the view function—altering its logic somehow—we could
do that without affecting the URL to which the function is bound.

e Furthermore, if we wanted to expose the current-date functionality at several URLs, we
could easily take care of that by editing the URLconf, without having to touch the view code.
That’s loose coupling in action.

404 Errors in Django

e In our URLconf thus far, we've defined only a single URLpattern: the one that handles
requests to the URL /time/. What happens when a different URL is requested?

e To find out, try running the Django development server and hitting a page such as
http://127.0.0.1:8000/hello/ or http://127.0.0.1:8000/does-not-exist/, or even
http://127.0.0.1:8000/ (the site “root”). You should see a “Page not found” message (see
the below Figure).

e Django displays this message because you requested a URL that’s not defined in your

URLconf.
: — " Pagerot found at / =
P B E -_:.8nup:,r,-':lz?.n‘u.;-.anuw "-’_G.v Guoagle

Page not found ana;

Roquost Mohod: GET
Request JAL: hitp/127.0:0.1:8000/

Using the UNLconf defnod in byeLie. 10, Django tried these UNL patterne, inthia endar:
1. “oowih

The curent URL, ¢, didn'l melch any o these,

¥oute eoaing thie army Bocouss you have naorg = Tewe 0 your Diange sotling: fila. Change that 10 fetea, and Djange wil dicpay a
slandard 404 page

¢ The utility of this page goes beyond the basic 404 error message; it also tells you precisely
which URLconf Django used and every pattern in that URLconf. From that information, you
should be able to tell why the requested URL threw a 404.

e Naturally, this is sensitive information intended only for you, the Web developer. Ifthiswere
a production site deployed live on the Internet, we wouldn’t want to expose that information
to the public. For that reason, this “Page not found” page is only displayed if your Django
project isin debug mode. We'll explain how to deactivate debug mode later.

e For now, just know that every Django project is in debug mode when you first create it, and
if the project is not in debug mode, a different response is given.

Django’s Pretty Error Pages

e Take a moment to admire the fine Web application we’'ve made so far - deliberately
introduce a Python error into our views.py file by commenting out the offset = int{offset)
line in the hours ahead view:

def hours_ahead(request, offset):
#offset = int{offset)

B|Page Prof. Parthasarathy P V (V) 8961623822

21CS62 FULL STACK DEVELOPMENT

dt = datetime.datetime.now() + datetime.timedelta(hours=offset)
html = "<htmi><body>In %s hour(s), it will be %s.</body></html>" % (offset, dt)
return HttpResponse(htmi)

e Load up the development server and navigate to /time/plus/3/. You'll see an error page
with a significant amount of information, including a TypeError message displayed at the
very top: "unsupported type for timedelta hours component: str".

e What happened? The datetime.timedelta function expects the hours parameter to

e be an integer, and we commented out the bit of code that converted offset to an integer.
That caused datetime.timedelta to raise the TypeError. It's the typical kind of small bug that
every programmer runs into at some point.

The point of this example was to demonstrate Django’s error pages. Take some time to explore

the error page and get to know the various bits of information it gives you.

e The Django error page is capable of displaying more information in certain special cases,
such as the case of template syntax errors.

s Are you the type of programmer who likes to debug with the help of carefully placed print
statements? You can use the Django error page to do so—just without the print statements.
At any point in your view, temporarily insert an assert False to trigger the error page. Then,
you can view the local variables and state of the program.

¢ Finally, it’s obvious that much of this information is sensitive—it exposes the innards of your
Python code and Django configuration—and it would be foolish to show this information on
the public Internet. A malicious person could use it to attempt to reverse-engineer your Web
application and do nasty things. For that reason, the Django error page is only displayed
when your Django project is in debug mode.

Dynamic URLs

e Inourfirst view example, the contents of the page—the current date/time—were dynamic,
but the URL (/time/) was static.

¢ In most dynamic Web applications, though, a URL contains parameters that influence the
output of the page.

e |let's create a second view that displays the current date and time offset by a certain
number of hours. The goal is to craft a site in such a way that the page /time/plus/1/ displays
the date/time one hour into the future, the page /time/plus/2/ displays the date/time two
hours into the future, the page /time/plus/3/ displays the date/time three hours into the
future, and so on.

® A novice might think to code a separate view function for each hour offset, which might
result in a URLconf like this:

urlpatterns = patterns(",

(r'Atime/S', current_datetime),
(r'rtime/plus/1/5', one_hour_ahead),
(r'rtime/plus/2/S’, two_hours_ahead),
(r'rtime/plus/3/S’, three_hours_ahead),
(r'rtime/plus/4//S', four_hours_ahead),
)

9|Page Prof. Parthasarathy P V (V) 8961623822

21CS62 FULL STACK DEVELOPMENT

Pretty URLs

e |Ifyou're experienced in another Web development platform, such as PHP or Java, you may
be thinking, “Hey, let’s use a query string parameter!”—something like /time/plus?hours=3,
in which the hours would be designated by the hours parameter in the URL’s query string
(the part after the 7).

® You can do that with Django, but one of Django’s core philosophies is that URLs should be
beautiful. The URL /time/plus/3/ is far cleaner, simpler, more readable, easier to recite to
somebody aloud and. . . just plain prettier thanits query string counterpart.

e Pretty URLs are a sign of a quality Web application. Django’s URLconf system encourages
pretty URLs by making it easier to use pretty URLs than not to.

Wild Card patterns in URLS

e Continuing with our hours ahead example, let's put a wildcard in the URLpattern. As we
mentioned previously, a URLpattern is a regular expression; hence, we can use the regular
expressionpattern \d+ to match one or more digits:

from django.conf.urls.defaults import *

from mysite.views import current_datetime, hours_ahead
urlpatterns = patterns(",

(r'Atime/S', current_datetime),

(r'Atime/plus/\d+/S", hours_ahead),

)

e This URLpattern will match any URL such as /time/plus/2/, /time/plus/25/, or even
Jtime/plus/100000000000/. Come to think of it, let’s limit it so that the maximum allowed
offsetis 99 hours. That means we want to allow either one- or two-digit numbers—in regular
expression syntax, that translates into \d{1,2}:

(r'atime/plus/\d{1,2}/S', hours_ahead),

o Now that we've designated a wildcard for the URL, we need a way of passing that data to
the view function, so that we can use a single view function for any arbitrary hour offset. We
do this by placing parentheses around the data in the URLpattern that we want to save.

e |nthe case of our example, we want to save whatever number was entered in the URL, so
let’s put parentheses around the \d{1,2}:

(r'rtime/plus/(\d{1,2})/$', hours_ahead),

e The final URLconf, including our previous current_datetime view, looks like this:

from django.conf.urls.defaults import *

from mysite.views import current_datetime, hours_ahead

urlpatterns = patterns(",
(r'Atime/S’, current_datetime),
(r'Atime/plus/(\d{1,2})/5", hours_ahead),
)
e hours_ahead is very similar to the current_datetime view we wrote earlier, with a key
difference: it takes an extra argument, the number of hours of offset. Add this to views.py:
def hours_ahead(request, offset):

10|Page Prof. Parthasarathy P VV (M) 8961623822

21CS62 FULL STACK DEVELOPMENT

offset = int(offset)

dt = datetime.datetime.now() + datetime.timedelta(hours=offset)

html = "<html><body>In %s hour(s), it will be %s.</body></html>" % (offset, dt)
return HttpResponse(html)

Let's step through this code one line at a time:

* Just as we did for our current_datetime view, we import the class django.http. HttpResponse and
the datetime module.

e The view function, hours_ahead, takes two parameters: request and offset.

* request is an HttpRequest object, just as in current_datetime. We'll say it again: each view always
takes an HttpRequest object asits first parameter.

= offsetis the string captured by the parentheses in the URLpattern. For example, if the requested URL
were [time/plus/3/, then offset would be the string '3, If the requested URL were /time/plus/21/,
then offset would be the string '21'. Note that captured strings will always be strings, not integers,
even if the string is composed of only digits, such as '21".

e The first thing we do within the function is call int() on offset. This converts the string value to an
integer.

® The next line of the function shows why we called int() onoffset. On this line, we calculate the current
time plus a time offset of offset hours, storing the result in dt. The datetime.timedelta function
requires the hours parameter to be an integer.

* Next, we construct the HTML output of this view function, just as we did in current_ datetime. A
small difference in this line from the previous line is that it uses Python’s format-string capability with
two values, not just one. Hence, there are two %s symbols in the string and a tuple of values to insert:
(offset, dt).

* Finally, we return an HttpResponse of the HTML—again, just as we did in current_datetime.

With that view function and URLconf written, start the Django development server, and visit
http://127.0.0.1:8000/time/plus/3/ to verify it works, Then try
http://127.0.0.1:8000/time/plus/5/. Then http://127.0.0.1:8000/time/plus/24/. Finally, visit
http://127.0.0.1:8000/time/plus/100/ to verify that the pattern in your URLconf only accepts
one- or two-digit numbers; Django should display a “Page not found” error in this case, just as
we saw in the “404 Errors” section earlier. The URL http://127.0.0.1:8000/time/plus/ (with no
hour designation) should also throw a 404.
« Ifyou're following along while coding at the same time, you'’ll notice that the views.py file
now contains two views. views.py should look like this:
from django.http import HttpResponse
import datetime

def current_datetime(request):
now = datetime.datetime.now()
html = "<html><body>It is now %s.</body></html>" % now
return HttpResponse(htmi)

def hours_ahead(request, offset):
offset = int(offset)
dt = datetime.datetime.now() + datetime.timedelta{hours=offset)
html = "<html><body>In %s hour(s), it will be %s.</body></html>" % (offset, dt)
return HttpResponse(htmi)

11|Page Prof. Parthasarathy P VV (M) 8961623822

